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TEORIA RELATIVITY

Autorom tedrie relativity bol Albert Einstein. Specialna tedria relativity, ktor(
publikoval vroku 1905, priniesla podstatnG zmenu v chapani ¢asu a priestoru,
znamenala koniec predstav o ich absolttnosti. Ukazala, ze dizky aj ¢asové intervaly
zavisia od toho, z ktorej vzt'aznej ststavy ich pozorujeme. Vyplynulo z nej, Ze
hmotnost’ a energia navzajom suavisia, ze ak sa zmeni energia Castice, ¢i fyzikalnej
sistavy, zmeni sa aj jej hmotnost’. Jej piliermi s postulaty o rovnocennosti vetkych
inercidlnych slstav a nezavislost’ rychlosti svetla od pohybu zdroja ¢i pozorovatela.
Rozhodujucim podnetom na jej vznik bol nestlad Maxwellovych rovnic s Galileiho
transforméaciami, ale prispeli aj pokusy, poukazujlce na neexistenciu éteru.

O desat’ rokov neskor Einstein publikoval v§eobecnu tedriu relativity, v ktorej
postuloval rovnocennost’ vSetkych vztaznych sastav, vratane neinercidlnych, Jej
vyznamnou sucastou je tvrdenie o lokalnej nerozlisitenosti zrychleného pohybu a
gravitatného posobenia (napr. pozorovatel' V uzavretej kabine vyt'ahu ich nedokaze
rozlisit). Z teorie vyplynulo, Ze geometria priestoru i plynutie ¢asu zavisia od rozlo-
Zenia hmoty v priestore, ze pritomnost’ hmoty zakrivuje priestor, ako aj svetelné luce.
Jej predpovede — napriklad existencia gravitaénych vin, &i gravitaénych $ooviek, boli
neskor potvrdené. Vseobecna teoria relativity vSak nebude predmetom tejto kapitoly..

Specialna teoria relativity sa zaobera javmi, ktoré sa pri mechanickych dejoch
daju pozorovat® az pri tzv. relativistickych rychlostiach, ¢o st rychlosti porovnatel'né s
rychlostou svetla. KlasickdA mechanika zalozena na Newtonovych zakonoch pri
takychto rychlostiach uz neposkytuje korektné vysledky. Rychlosti takejto velkosti
nadobudaju napriklad elektrony urychlené napétim desiatok kilovoltov, ¢o sa tyka uz
aj elektronov v obrazovkach starsich televizorov. Elektromagnetické javy su vSak so
Specialnou tedriou relativity v uplnej zhode. Vyplyva z nej, ze magnetické a elektrické
polia su iba dvoma strankami jedinej reality. Sulad s tedriou relativity sa prejavuje aj
pri Maxwellovych rovniciach, ktoré si pri transformaciach medzi inercidlnymi susta-
vami, zachovavaju svoj tvar.

V prvej podkapitole si opisané experimenty, ktoré poukézali na neexistenciu
éteru a nezavislost' rychlosti svetla od vzajomného pohybu zdroja a pozorovatela.
Tento vysledok uviedol Einstein ako jeden z postulatov Specialnej tedrie relativity.
Druhad podkapitola sa zaoberd Lorentzovymi transformaciami aich dosledkami na
mechanické javy, akymi su kontrakcia dizky a dilatacia ¢asu. Odvodeny je aj
transformac¢ny vztah pre rychlost’ objektov pozorovanych z rdznych inercidlnych
ststav, odlisny od vztahu klasickej mechaniky. Tretia podkapitola je zamerana na
hmotnost’, energiu a hybnost’ objektov. Zddévodiuje, preco sa s rychlostou telesa
zvidsuje aj jeho hmotnost’. Stvrta podkapitola je venovana elektromagnetickym javom,
transformaciam prislusnych veli¢in, ako aj invariantnosti elektrického naboja castic,
ktory na rozdiel od ich hmotnosti sa s rychlostou nemeni.
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Potrebné vedomosti

Treba poznat’ pojmy zavedené uz v mechanike — hybnost’, praca, energia, a pre cast’
o relativistickej elektrodynamike aj Maxwellove rovnice, Coulombov a Biotov-
Savartov zakon.



15.1 Pokusy dokazujuce neexistenciu éteru

V poslednej tretine XIX. storo¢ia, po Maxwellovej predpovedi (1865) a
Hertzovom experimentalnom dbdkaze existencie elektromagnetického vinenia (1888),
zacalo sa uvazovat’ o prostredi, ktorym sa toto vlnenie $iri (akym je napr. vzduch pri
Sireni zvuku). Predpokladané prostredie dostalo nazov éter, ale problémy boli
s experimentalnym dokazom jeho existencie. Predpokladalo sa, Ze éter vypliia cely
vesmirny priestor, ze je nehybny a Ze planéty a hviezdy sa v iom pohybuja. Pohyb
vzhl'adom na éter — ak by sa ho podarilo zistit’ — by bol absolitnym pohybom, v stlade
s Newtonovymi predstavami o absolitnom priestore a ¢ase. Z viacerych pokusov,
ktoré mali tento absolitny pohyb zistit, si pozornost zaslizi najmd pokus
Michelsonov, a z neskorSieho obdobia pokus s atdmovymi hodinami.

15.1.1 Michelsonov - Morleyov pokus

Pokus vychadzal z predpokladu, Ze éter zapiia cely Vesmir a Ze svetlo sa
vzhl'adom na éter pohybuje vo vSetkych smeroch vzdy rovnakou rychlost’ou, podobne
ako viny po hladine pokojného jazera. Pohyb Zeme okolo Slnka sa vtedy da
interpretovat’ ako pohyb vzhl'adom na éter, pravda za predpokladu, Ze Slnko sa
vzhl'adom na éter nepohybuje. To by znamenalo, Ze rychlost’ svetla vzh'adom na Zem
by zavisela od velkosti a smeru jej rychlosti. V lete by sme namerali ina rychlost’

rychlost' svetla ¢ =~~~ =~ ~-~===—=~=-= > rychlosti Zeme v >

rychlost’ svetla vzhl'adom na
Zem—V lete a v zime

c+ Vv
—_— e —— — -+ Obr.151.1.1

svetla prichadzajuceho napriklad od hviezdy Regulus (lezi v rovine ekliptiky), ako
v zime. Ked sa Zem pohybuje v Gstrety prichadzajucemu svetelnému lacu, mali by
sme mu namerat’ vysSiu rychlost, ako v pripade pohybu Zeme opaénym smerom.
A este inaksiu vel'kost’ rychlosti by sme namerali, keby sa svetelny Iu¢ pohyboval
kolmo na smer pohybu Zeme.

V roku 1887 A. Michelson navrhol a skonsStruoval optické zariadenie —
interferometer — ktory neskor spolu s E. Morleyom zdokonalili a pokusili sa porovnat’



rychlosti dvoch svetelnych lacov, pohybujiacich sa v navzdjom kolmych smeroch.
Preto ich interferometer mal dve na seba kolmé ramena (obr.15.1.1.2).
Uzky svetelny 14 vychadzajuci zo

i, zdroja dopadd na polopriepustné

""f"_ T B zrkadlo P, kde sa deli na dve priblizne

0 rovnako intenzivne d&asti. Jedna &ast

Ny i P Iﬁ pokracuje priamo k_zrkadlu A, odrazeqé
N - Iﬁ k zrkadlu B, na nich sa la¢e odrazia
zdroj A a vracaju k polopriepustnému zrkadlu P.
Tam sa opit’ kazdy z laCov rozdvoji —

detektor Obr.15.1.1.2 Cast’ sa vracia smerom k zdroju, cast’

smeruje k detektoru, zvycajne d’aleko-
hladu, ktorym bola sledovana interfe-
rencia ladov. Vysledok interferencie zavisi od rozdielu dizok, ktorymi musia dva la¢e
prejst’. Tento rozdiel zavisi od dizok ramien interferometra — od vzdialenosti zrkadiel
A resp. B od polopriepustného zrkadla P. Predpokladajme, ze ramend maji rovnaki
dizku 7.
Keby sa Zem vzhl'adom na éter nepohybovala, svetlo by na prelet od zrkadla P
k zrkadlam A, resp. B a nazad, potrebovalo ¢asovy interval At, = 2//c . Ked sa vSak
pohybuje, tak tieto C¢asové intervaly by sa mali zmenit. Pri ramene rovnobeznom
s vektorom rychlosti Zeme je rychlost’ svetla v jednom smere ¢ + v, V opacnom smere
¢ - v. Pre Casovy interval At potrebny na prelet ramena tam a spit’ tak dostaneme

2/ 2/ C 2/ 1

At = p— + e ZECZ e R w2/ (15.1.1.1)
P Svetelny luc letiaci v ,,kolmom* smere sa
_f ______ : B musi pohybovat mierne Sikmo, lebo
I '\ 4, pokym od zrkadla P prejde k zrkadlu B,
W : . toto sa rychlostou v 0 kdsok posunie.
7R . Dvakrat musi preletiet’ drahu /; , pokym sa
zdroj P P* vrati k zrkadlu P, na ¢o potrebuje Casovy
Obr.15.1.1.3 interval At, . Na zéklade obrazku 15.1.1.3
platia vztahy
2 2 2
()2 =12+ (v%) a (= c% | tize CZ(AQ)Z . UZ(AQ)Z ,
odkial’ ipravou ziskame
(c2—v2)(At)2 =47 = (At)? = A
=)’

a kone¢ny vzt'ah:



Aty = ———. (15.1.1.2)

Za predpokladu, ze Zem sa vzhl'adom na éter pohybuje rychlostou v a Ze svetlo sa
vzhl'adom na éter pohybuje stalou rychlostou ¢, svetlo na prelet cez navzajom kolmé
ramend interfereometra potrebuje rézne ¢asové intervaly. Pre ich rozdiel by platilo:

A= A A 2 1 1 2 . v? ) 1v? _ﬁvz

t— t”_ tJ_—C 1_17_2_ UZ =C +C2 - +2C2 _CC2
C2 1—C—2

(15.1.1.3)

Pri dizke ramien interferometra ¢ = 10m, rychlosti svetla ¢ = 3 x10%m/s
arychlosti Zeme v =3 x 10* m/s, pre rozdiel ¢asovych intervalov dostaneme (daj

At = (1/3) x 107155,

Za tento kratky ¢asovy interval svetlo preleti vzdialenost c¢-At = 107m, &o je jedna
pitina vinovej diZky zeleného svetla. To znamena, Ze v pozorovacom d’alekohl’ade by
sme mali vnimat’ interferenciu dvoch svetelnych vin, ktoré su drdhovo posunuté
0 tento zlomok vInovej diZky. Po §iestich hodinach si v ddsledku rotacie Zeme ramena
vymenia ulohy (povodne rovnobezné rameno bude teraz kolmé na smer pohybu
Zeme), takze v dalekohl'ade by sme mali sledovat’ postupné zmeny interferencného
obrazu. Napriek ocakavaniu sa interferenény obraz pri Michelsonovom a
Morleyovom experimente vobec nemenil, ani pocas diia, ani v priebehu roka.

Zaporny vysledok experimentu sa da vysvetlit napriklad tak, Ze éter sa
pohybuje spolu so Zemou, alebo, Ze rychlost’ svetla je vo vSetkych smeroch rovnaka,
neovplyvnena pohybom Zeme. Pohyb éteru spolu so Zemou (hovorilo sa o dokonalom
strhavani éteru Zemou) je vSak nepravdepodobny, lebo to isté by sa dialo aj v pripade
inych planét, alebo dokonca pohybujucich telies. Preto je nezavislost’ rychlosti svetla
od pohybu zdroja ¢i pozorovatela tym spravnym zaverom vyplyvajucim z vysledku
Michelsnonovho a Morleyovho experimentu.

15.1.2 Pokus s atbmovymi hodinami

Ide 0 experiment uskuto¢neny mnoho rokov po vzniku teodrie relativity. V Case
jej vzniku eSte neboli k dispozicii také presné metddy merania ¢asu, aké poskytuju
atdbmové hodiny. Tento experiment ma jednoduchd analogiu v sireni zvuku vzduchom,
alebo vin po pokojnej hladine jazera. Ked sa zdroj zvuku a pozorovatel' vzhladom na
vzduch nepohybujd, a medzi nimi je vzdialenost’ ¢, vyslany zvukovy signal doleti
k pozorovatel'ovi za Casovy interval At = ¢/c, kde ¢ je rychlost’ zvuku vo vzduchu.
Ak sa zdroj aj pozorovatel’ pohybuji rovnakou rychlostou v Vv smere Sirenia zvuku,



potom pozorovatel’ pred zvukovym signalom uteka, takZe signdl musi prekonat’ vacsiu
vzdialenost’ nez ¢, pokym pride aZ k pozorovatelovi. To znamend, Ze mu to trva
dlhsie. Ak sa zdroj aj pozorovatel’ pohybuju opaénym smerom, potom zvukovy signél
pride k pozorovatel'ovi za kratsi Casovy interval.

Podobna situécia by nastala, keby sme sledovali Sirenie elektromagnetickej viny
medzi vysielacom a prijima¢om, umiestnenymi na povrchu Zeme (napr. na rovniku).
Pravda, za predpokladu, ze elektromagnetické viny sa S$iria nehybnym éterom.
Predpokladajme ze Zem sa vzhl'adom na éter pohybuje rychlostou v. Ak by sa vina
od vysiela¢a k prijimacu o polnoci Sirila sihlasne so smerom pohybu Zeme, trvalo by
jej to dlhsie ako na poludnie (obr. 15.1.2.1). Prijima¢ by vtedy pred vinou vyslanou
vysielacom unikal, na rozdiel od poludnia, kedy by jej Siel v Ustrety. Rozdiel medzi
casovymi intervalmi, ktoré by vlna potrebovala na poludnie aVvnoci dokdZzeme
vypocitat’ a v sti€asnej dobe by sa pomocou atomovych hodin dali aj zmerat'.

vysielac /XTI prijimac polnoc
'
D
poludnie
A Obr. 15.1.1.2

Najprv vypocitame prislusné Casové intervaly. Nech sa elektromagnetickd vina
pohybuje vzhl'adom na éter rychlostou ¢, a Zem vzhladom na éter rychlostou wv.
Vzdialenost’ medzi vysielacom a prijimac¢om nech je d . Ak prijimac¢ pred vinou
uteka, vlna potrebuje na prelet casovy interval Aty , ked ide vine oproti, casovy
interval At,,,., pre ktoré platia vztahy:

d d
Atderv‘l = c—v ) Atnoc = c+ v (15121)
Pre rozdiel tychto ¢asovych intervalov dostaneme:
d d 2dv
At = - = (15.1.2.2)

c—v c+v c?2—-v?’
Ked dosadime hodnoty d =100 km, ¢ =3 x 108 m/s, v = 3 x 10* m/s, pre rozdiel
¢asovych intervalov dostaneme priblizne At = 3 X 1078s, o je v sucasnosti
pohodlne meratel'na hodnota. Ved sekunda sa v stucasnosti reprodukuje s relativnou
neurditostou 1 X 10713s. Experimenty ukézali, Ze ¢asové intervaly At,o. @ Atges
boli s vysokou presnostou namerané ako rovnaké.



Experiment s atdmovymi hodinami s ovela vys$Sou presnostou potvrdil
vysledok Michelsonovho — Morleyovho pokusu. Nie je teda mozné zistit’ pohyb Zeme
vzhl'adom na éter, resp. namerand rychlost’ svetla nezdvisi od pohybu pozorovatel'a
vzhl'adom na zdroj.

Spomenieme este pokus, ktory vykonali F. Trouton a H. Noble v rokoch 1902
az 1903. Pokusali sa ur¢it’ moment sily pdsobiaci na dvojicu nabojov s opa¢nymi
znamienkami (ako dipol), ktoré pri pohybe vzhl'adom na éter mali na seba pdsobit’
nielen elektrostaticky, ale aj magneticky. Pritom mal vzniknat moment sily, zabezpe-
Cujtci rozdielne polohy dipdlu vo dne a v noci. Pokus realizovali pomocou nabitého
kondenzatora zaveseného na jemnom vldkne, aj ten vSak viedol krovnakému
vysledku, ako dva uz spomenuté pokusy.

15.1.3 Einsteinove postulaty

Pokusy snaziace sa objavit' éter ukazali, ze nech sa akokol'vek pohybujeme,
rychlost’ svetla, ktori nameriame, je vzdy rovnaka (rozumie sa rychlost’ vo vakuu).
Ako keby sme sa vzhl'adom na éter nepohybovali, resp. ako keby hypoteticky éter bol
Uplne strhavany pohybom Zeme. Ale planéty, aj rézne telesa na Zemi, sa pohybuju
roznymi rychlostami, takze absolutne strhavanie éteru len naSou Zemou je
nepravdepodobné. Preto modzeme konStatovat, Ze nejestvuje absolitne stojace
médium, ktorym sa Siria elektromagnetické viny.

Berlc do Gvahy vysledky experimentov Einstein sformuloval dva postulaty:

l. VSetky inercidlne vztazné sustavy st pre opis fyzikalnych dejov
rovnocenné, ziadna z nich nemoéze byt povazovana za preferovanu
(absolutnu).

. Rychlost” svetla (Vo vakuu) nezavisi od pohybu, ani vol'by vztaznej
sustavy, vzhladom na ktor sa meria. Vo vSetkych vztaznych
sustavach je rovnaka.

Prvy postulat sa oznaCuje aj ako Specialny princip relativity (niekedy aj ako
Einsteinov). Mo6ze sa doplnit formulaciou, ze fyzikalne zakony (nielen pre
mechanicke, ale aj pre ostatné javy) musia mat’ rovnaky tvar vo vsetkych inercialnych
vztaznych sustavach.

Einsteinove postulaty wvyplynuli z logickeho posidenia experimentov.
Vyjadruju prekvapujicu skutoc¢nost’, ze keby sme sa akokol'vek rychlo pohybovali
V ustrety svetelnému lacu, vzdy by sme mu namerali rovnaku rychlost’. To je v rozpore
S beznym principom skladania rychlosti, podl'a ktorého sa rychlosti s¢itavaji linearne.
Rychlost’ cestujiceho pohybujlceho sa v elektricke, sa vzh'adom na kol'ajnice rovna
suctu rychlosti elektricky a rychlosti cestujuceho vzhl'adom na elektricku. Takéto
klasické¢ skladanie rychlosti opisuju Galileiho transformacné vztahy medzi



suradnicami dvoch vztaznych sustav, ktoré sa navzajom pohybuju. Ich platnost’ sme
doteraz intuitivne predpokladali, je v§ak vhodné uviest’ ich matematicku formu.

RN

Obr. 15.1.3.1

Na obrazku si znazornené dve suradnicové slUstavy S a S’, ktoré maju rovnobezné
suradnicové osi, priCcom sustava S’ sa vzh'adom na ststavu S pohybuje rychlostou v
v kladhom smere osi x . Predpokladajme, Ze bod P sa v sUstave S nepohybuje, a ma
suradnice P (x, y). Jeho sUradnica 7y’ je rovnaka ako sdradnica y (¥’ =y) , ¢o
mozeme napisat’ aj pre tretiu suradnicu: z’ = z. Ale slradnica x’ sa vsustave S’
S ¢asom meni podl'a vztahu

x' = x -vt.

Tieto vztahy spolu tvoria Specialny pripad Galileiho transfomacii:
X=x-vt, y=y, zZ=z. (15.1.3.1)

Ak by sa bod P pohyboval rovnobezne s 0sou x rychlostou u, jeho rychlost’
u’ vzhl'adom na sustavu S’, vypocitame derivaciou transformac¢ného vzt'ahu medzi
stradnicami x a x’:

, dx d dx

u=E=a(x—vt)=a—v=u—v, (15.1.3.2)
¢o je Galileiho transformaény vztah pre rychlost. Podl'a tohto vztahu by pozorovana
rychlost’ svetla zavisela od rychlosti pohybu pozorovatel'a. Tento vztah bol intuitivne
pouzity pri posudzovani Michelsonovho — Morleyovho pokusu, aj pokusu s atémo-
vymi hodinami. Ako ukazali tieto experimenty, viedlo to k nespravnemu odhadu
vysledkov. Spravne vysledky vSak poskytuju transformacie, ktoré sformuloval H. A.
Lorentz v snahe najst’ transformacie, ktoré zachovavaju tvar Maxwellovych rovnic. SU
odvodené v nasledujuce;j ¢asti tohto textu.

K vypoctu rychlosti v Ciarkovanej sustave treba eSte dodat’ vyznamni
poznamku — predpokladali sme, Ze ¢as v obidvoch sustavach plynie rovnako, teda Ze aj
Casové intervaly dt’a dt su rovnaké. Takyto predpoklad je v sulade s Newtonovou
predstavou absolUtneho priestoru a ¢asu. Ten vSak z hl'adiska tedrie relativity nie je
spravny.

Treba dalej uviest, ze Newtonova rovnica F = ma nemeni svoj tvar pri
transfomacii do inej inercialnej sustavy, ak sa pouziju Galileiho transformaéné vztahy.
Ked'ze vzajomna rychlost’ v dvoch inercialnych slstav sa s ¢asom nemeni, derivaciou
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vztahu (15.1.3.2) podla Casu zistime, ze zrychlenie (Castice, telesa) je Vv obidvoch
sstavach rovnakeé:
, _du  du

a —E=E+O=a. (15.1.3.3)

Ateda aj sily su v tychto ststavach rovnaké (F = F' = ma), lebo hmotnost’ m sa
podrla Klasickej fyziky s narastajucou rychlostou nemeni. Preto si pohybové zakony
tykajuce sa mechanickych dejov vo vsetkych takychto vztaznych ststavach rovnaké.
Tato skuto¢nost’ sa oznacuje ako mechanicky, alebo Galileiho princip relativity.

Inak je to pri Maxwellovych rovniciach opisujlcich elektromagnetické deje,
vratane Sirenia svetla — tie nie st v stlade s Galileiho transformaciami. V sulade su
v8ak s Lorentzovymi transforma¢nymi vztahmi, vo¢i ktorym naopak, nie s inva-
riantné Newtonove pohybové rovnice. Lorentzovym transformacidm je venovana
nasledujlca podkapitola.

Kontrolne otazky

Co bolo cielom Michelsonovho pokusu a aky bol jeho vysledok?

Ktory pohyb Zeme vzhladom na éter mohol mat’ vicsi vplyv — denny ¢i rocny?

V c¢om je nesulad vysledkov Michelsonovho pokusu s Galileiho transformaciami?
Ako Einstein vyriesil negativny vysledok Michelsonovho pokusu?

Sformulujte vlastnymi slovami prvy aj druhy Einsteinov postulat.

Co hovori Specidlny princip relativity, ¢im sa lisi od mechanického principu?
Ktora cast fyziky je v sulade s Galileiho transforméaciami?

Moéze sa suradnicova sustava viazana na zemsky povrch povazovat za inercialnu?

N kDR
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15.2 Lorentzove transformacie a ich dosledky

Experimenty vykonané eSte koncom 19. storocia ukazali, Ze Galileiho
transformécie vedu k nespravnym predpovediam, ked’ ide o elektromagnetické javy.
Preto sa hladali iné transformaéné vzt'ahy, ktoré by ich korektne opisovali. V tejto
podkapitole su odvodené Lorentzove transformécie a posudené désledky, ktoré z nich

vyplyvajd.

15.2.1 Odvodenie Lorentzovych transformacii

Lorentzove transformacie sa od Galileiho liSia tym, ze pri prechode do inej
inercialnej sustavy sa menia nielen priestorové siradnice objektov, ale aj ¢asové udaje
udalosti. Casovy tdaj konkrétnej udalosti namerany v jednej sustave, sa nemusi
zhodovat’ s Udajmi nameranymi Vv inych sustavach. Treba vsak hned uviest, Ze
z rovnocennosti inercialnych sustav vyplyva (prvy Einsteinov postulat), Ze VO
vSetkych inercialnych sustavach plynie ich tzv. vlastny c¢as rovnako. Etalony sekundy
aj metra su vo vsetkych inercialnych sustavach rovnaké, len ich velkosti sa inak javia
z0 sustav, vzhl'adom na ktoré sa tieto etalény pohybuju. Transformuju (menia) sa
Udaje o polohe a ¢asovom okamihu ,,bodovej udalosti pri prechode do inej iner-
cialnej sustavy.

WY y WX X
\ P \ B
\ P ‘ \ — y
\ e T Z( \ -7 \ —t
\ JPtae \\ - \ //, \‘ ~
< ‘o ” - . -
\ f’ \ L =~
- -
\ -~ \ - o
- -
= X - t
Obr. 15.2.1.1 Obr. 15.2.1.2

Zmena polohovych stradnic je sucast'ou aj Galileiho transformaénych vztahov,
zmena Casovej ,suradnice”, je vSak Specialitou Lorentzovych transformacii. Tieto
transformécie dokazeme odvodit’ na zaklade analdgie s dvoma navzajom pootocenymi
ortogonalnymi kartezianskymi sustavami so spolo¢nym zaciatkom (obr. 15.2.1.1). Bod
P ma v sastave Ssuradnice (x,y), Vsustave S’ sturadnice (x’,y°), priCom medzi
suradnicami platia linearne transformacné vzt'ahy

X' =apx+ay, Y =ax+ay,
resp.
x=adpx tanpy, y=adpxX+adpy
(15.2.1.1)
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Ak jednu z priestorovych suradnicovych osi nahradime Casovou osou, zistime, Ze
vlastne ide o znazornenie dvoch inercidlnych sustav, ktoré sa navzajom pohybuja,
pricom uhol pooto¢enia o SUvisi S ich vzajomnou rychlostou v prostrednictvom
vztahu tg a = v (— dodatok D1). Predstavme si dve inercialne slstavy, s osami x a
x’ leziacimi v jednej priamke (ako na obrdzku 15.1.3.1 v predchadzajiicom ¢lanku).
Nech v ¢ase t; =t'; = 0 st ich zaliatky totozné a nech odtial’ (t.j. z polohy x; =
x'; = 0) vtomto okamihu vyStartuje v smere osi x pretekar. Ten v ¢ase t, dobehne
do bodu B, ktory ma sdradnicu x, . Jeho rychlost’ v sustave S vypocitame ako podiel
u=(x,- x1)/(t, - t;), ale v sustave S’, ktora sa vzh'adom na sustavu S pohybuje
rychlostou v, sa jeho rychlost’ vypocita podla vztahu v’ = (x’, - x*;)/(t’, - t';), €o
aj podl'a obrazku 15.2.1.2 poskytuje int hodnotu.

V analogii so vztahmi (15.2.1.1) napiSeme transformacné vzt'ahy vychadzajuce
z obr. 15.2.1.2, ale suradnicu y nahradime ¢asovou stradnicou, (pri trojrozmernom
priestore povazujeme ¢asovu suradnicu za Stvrtd, preto pri nej pouzivame index ,,4°):

X' = a;1x + aqut, t' = ay1x + aut, (15.2.1.2)
a spatné transformaécie
X=a 11X +ad14t, t=a X +a,t (15.2.1.3)

Treba urcit’ koeficienty a;; a a’;; vystupujlce v tychto vztahoch. Predpokladali sme,
ze na zacCiatku, teda v ¢ase t =t = 0 st zaCiatky sustav spolocné. Zaciatok O’ v
sustave S’ ma zrejme trvale suradnicu x> = 0. Od zaciatku O ststavy S sa vSak
vzd’al'uje rychlostou v (pozdiZ osi x), preto sajeho x —ova stradnica meni s ¢asom
podla vztahu x = vt . Po dosadeni do prvého zo vzt'ahov (15.2.1.2) dostaneme:

x’ = aq41X + a14t g 0= allvt + a14t = A4 = —Aq1V,

takze vzt'ah nadobudne tvar
X =a;;(x —vt). (*)

Podobne, pre bod O plati x = 0, x’ = —vt’, odkial’ ziskame vzt'ah
x=a,(x +vt). (+%)

Pri d’al$ej uprave vyuzijeme najprv prvy Einsteinov postulat, podla ktorého st
obidve sUstavy rovnocenné, z ¢oho vyplyva, ze koeficienty a,; a a’;; nemézu byt
rozne, t.j. a;; = a’;;. Vnasledujicom kroku vyuzijeme druhy postulat, t.;j.
rovnaku rychlost’ svetla v obidvoch sustavach. Pritom urobime mysleny pokus so
Sirenim svetla v tychto sustavach — v okamihu, ked’ st ich zaciatky spolu, blikne tam
zdroj svetla. Svetelny signél sa v obidvoch ststavach §iri rovnakou rychlost'ou, teda aj
pozdiz osi x , aj pozdiz osi x’. To znamena, Ze v istom okamihu ¢, ktorému
v ststave S zodpoveda ¢asovy udaj t, svetelny signal v ststave S’ dosiahne bod
x'=ct avslstave S bod x = ct. Tieto udaje dosadime do vztahov (¥)a (**):

ct’ = a1 (ct —vt) = a;,1t(c —v), ct = a1 (ct’ +vt’) = a;1t'(c + v).

13



Rovnice navzdjom vynasobime, ¢im ziskame rovnost’

2440 2 1 (A2 2 2 CZ 1
c’tt’ = aj tt’'(c® — v*) = af; = =

A1 =
c? —v2 1 [1— (v2/c?)

Transformaéné vztahy pre suradnice x a x’ tak nadobudnu tvar:

x — vt x + vt
= X = (15.2.1.4)

-2’ J1—@%/c?)

Z tychto dvoch rovnic ziskame transformacie ¢asovych suradnic:

X1 —W?/c?)=x—vt = x’w/l—(vz/cz)z\/%—vt =

__xXAvt ey X vt X1 (w?/c?)]
vt eI x'1—(v?/c?) eI =

)

o vt + x’(v?/c?)
B J1—(w?%/c?) ’

odkial’ ziskavame vysledny transformac¢ny vzt'ah medzi ¢asovymi stradnicami t a t’:

Y L 2
LI C/ (15.2.1.5)

J1—@w2/c®)

Podobnym postupom by sme ziskali aj opacny transformacny vztah. t.j.
vyjadrenie ¢asu t’ pomocou Casu t.

Transformacné vztahy sme pocitali v Specidlnom pripade, ked vzajomna
rychlost’ stistav mala iba X-ovli zlozku. Vtedy sa stradnice y a z nemenia, takze
kompletné Lorentzove transformac¢né vztahy modzeme pre tento Specialny pripad
zapisat’ takto:

. x — vt _ x + vt
Vi—@?/c®)’ J1—w?/c?)
y =y y=y
zZ =z z=27
t—x(v/c? '+ x'(v/c?
t = (w/e?) t = (w/c?) (15.2.1.6)

Vi—@?/c®)’ J1—- w2/

Galileiho transformacie st Specialnym pripadom tychto transformacii, a to pri
malych vzajomnych rychlostiach inercialnych sustav, t.j. ked v << c , resp. pri ¢ — oo.
Vyraz v/c? vtedy mézeme zanedbat’ a odmocninu v menovateli povazovat’ za rovni
jednotke. Zo vztahu (15.2.1.5) vtedy vyplyva t =t’, Co znamena, Ze Casové surad-
nice bodovej udalosti su v takychto slstavach rovnaké. Predpokladom ¢ — o
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V podstate akceptujeme okamzité Sirenie signalov na dial’ku, ¢o predpoklada klasicka
mechanika, vratane Newtonovej tedrie 0 gravitatnom posobeni..

Na zaver je vhodné znova pripomenut, ze Lorentzove transforméacie (15.2.1.6)
sa tykaju dvoch inercialnych sustav, ktorych osi x lezia v jednej priamke. Existujd
transformacné vzt'ahy tykajice sa inej vzajomnej orientacie sustav, st pochopitelne
zloZitejSie, ale z fyzikalneho hl'adiska neprinasaji nové informécie.

Kontrolne otazky
1. Cim sa odlisujii Lorentzove transformdcie od Galileiho?
2. Kedy sa Lorentzove transforméacie redukuju na Galileiho?
3. V akom pripade sa suradnice y a z zachovavaju? Kedy by sa transformovali?

15.2.2 Kontrakcia dizok a dilatacia ¢asu

Z Lorentzovych transformac¢nych vztahov vyplyva, Ze rozmery predmetov sa
z roznych inercidlnych sustav nejavia ako rovnaké. Pritom hned v Uvode treba
upozornit, ze tento jav by bol redlne pozorovatelny az pri takych vzajomnych
rychlostiach sustav, ktoré su porovnateI'né s rychlost’ou svetla.

Predpokladajme, ze v sustave S’ na osi x’ je umiestnend ty¢, ktorej koncové
body maju suradnice x;’ a x,’, takze jej diZka v tejto sUstave je ¢ = x,” — x;’. AK
chceme urdit’ dizku tyGe zo sustavy S, ktora sa vzhladom na ty¢ pohybuje, musime
suradnice jej koncov zmerat’ v tejto ststave sucasne (v jedinom okamihu), inak by sa
ty¢ poCas merania posunula. Preto musime pouzit’ taky transformacny vztah, v ktorom
vystupuje ¢as t sustavy S anie Cast’:

, xl - vtl y xz - vtz

T R S e

pricom t, = t, . DiZku ty&e ziskame ako rozdiel stradnic:

xz_xl g
C=x,—x1= =

1= 1= /D)

odkial’ vyplyva vysledok

0 =0J1-@w?/c?). (15.2.2.1)

Kedze /1 — (v?/c?) < 1, tak zo vztahu (15.2.2.1) vyplyva, ze /< /( . Ty¢ bola
v pokoji v ststave S’, takze z pohybujucej sustavy sa ty¢ javi ako skratena.

Situdciu mdézeme otoCit’ a zo sustavy S’ pozorovat’ tyc, ktord je v pokoji v
sustave S. Teraz bude musiet’ merat’ stradnice koncovych bodov pozorovatel’ zo
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sustavy  S°, vrovnakych casovych okamihoch t’; = t’,. Preto treba pouzit

alternativny transformaé¢ny vzt'ah a z neho vypoéitat’ dizku tyce:
x'l - vt'l x’z - vt’z

N N S D)

odkial’ pre vztah medzi dizkami tyée meranymi z dvoch réznych inercialnych ststav

dostaneme:
=01 — (v2/c?). (15.2.2.2)

Aj v tomto pripade sa ty¢ javi ako kratSia tomu pozorovatel'ovi, ktory sa vzh'adom na

fiu pohybuje.
Vsimnime si eSte jednu okolnost’ — skratenie tyCe nezavisi od smeru pohybu
tyCe, €1 sa pohybuje smerom k pozorovatel'ovi, alebo od neho.

Priklad 15.2.2.1 Aka velka by musela byt’ vzajomna rychlost’ sustav, aby sa pohybu-
jucemu pozorovatelovi javila ty¢ skratena o 10% ?

Rie§enie: Pouzijeme vztah (15.2.2.2), priCom poZadujeme, aby ¢'/¢ = 0,9 .

Vysledok: v =0,436 c, ¢o je takmer polovica rychlosti svetla.

Podobne ako dizka, ani €asovy interval medzi dvoma udalostami pozoro-
vanymi z dvoch inercialnych sustav, nemusi byt rovnaky. Predpokladajme, Ze
vslstave S v mieste x, sa udeju dve kratke udalosti, jedna v ¢ase t;, druha v case
t,. Casovy interval medzi tymito udalostami je At =t, — t;. Pozorovatel zo
ststavy S’ zaregistruje tieto udalosti v ¢asovych okamihoch t’; a t’,, pre ktoré
podl'a Lorentzovych transformacii plati:

, tl —xl(v/CZ) , tz _xZ(v/CZ) s v
t, = t, = pricom x, = x4 .

JI—w2/en ° 1- @D

Takze pozorovatel' v S” nameria casovy interval

t,—t; At
JI- /D) J1-w2/cd)

Preto At’ > At, takZe pozorovany Casovy interval v S’ je vacsi nez v sustave S,
v ktorej sa udalosti udiali na tom istom mieste.

Aj v tomto pripade sa rozdiel v dizkach ¢asovych intervalov realne prejavi iba
vtedy, ked’ vzajomna rychlost’ ststav je porovnatelna s rychlostou svetla. Preto sa
tieto relativistické efekty — kontrakcia diZok a dilatacia ¢asovych intervalov — nedaju
Vv beZnom Zivote pozorovat. A podobne ako pri kontrakeii dizky, ani v tomto pripade
smer pohybu hodiniek vo¢i pozorovatel'ovi neovplyviuje vysledok.

S transformaciou Casovych suradnic stvisi aj relativnost’ sucasnosti dvoch

A =t,—t, = (15.2.2.3)

udalosti. Ak v jednej stistave konstatujeme, ze na dvoch rozliénych miestach sucasne
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blikli svetelné zdroje, z inej inercialnej ststavy sa tieto udalosti nejavia ako sucasné.
Nech v miestach x; a x, blikni zdroje v ¢ase t,.V ststave S’ budu tieto udalosti
pozorované v okamihoch

_ t, —x1(v/c?) , ty — x(v/c?)

t'l— , o= ,

by G/
J1—?%/c?)
odkial’ vidno, ze t’, — t’; sanerovnanule.

Tento vysledok nabada k otazke, ¢i sa pri pozorovani z inej inercidlnej sistavy
nemdze zamenit’ poradie dvoch udalosti. Je logické, Ze poradie priinne suvisiacich
udalosti sa neda zamenit. Zamenit’ by sa dalo poradie len takych dvoch udalosti, ktoré
sa udiali v miestach vzdialenych viac nez stéin rychlosti svetla a ¢asového intervalu
medzi tymito udalostami. Vtedy sa druha udalost’ udiala prv, nez k nej mohla prist’
informécia o prvej udalosti, o znamena, Ze prva udalost nemohla byt pric¢inou druhej.

takze

Priklad 15.2.2.2 Castica ma v nasej laboratornej sustave dobu Zivota 107°s. AKY je
tento Casovy interval v sustave viazanej na tato Casticu, ak sa pohybuje rychlostou
predstavujucou 98 % rychlosti svetla? Aku dlha drahu prejde v nasej laboratornej
sustave, a aku vo svojej?

Riesenie. Vznik a zanik Castice z hl'adiska ststavy viazanej na Casticu sa udial na tom
istom mieste, takZe z naSej sUstavy pozorujeme dlhSiu dobu jej zivota. VyuZijeme
vzt'ah (15.2.2.3): At’ = At/4/1 — v?/c?, priCom neiarkovana sistava je viazana na
Sasticu. Takze At'=10"%s a pre ¢asovy interval v slstave viazanej na &asticu
vychadza At = 1,99 x 107 7s, &o je priblizne pétkrat menej. Prejdena draha v nase;
sustave | = 294 m, dréha v sastave viazanej na Casticu je zrejme nulova.

Priklad 15.2.2.3 Svetelné hodiny

Vo valcovej nadobe s vyskou ¢ sa svetelny Iu¢ odraza od zrkadiel umiestenych na
zékladniach, takze ,tikanie* takychto hodin si vieme stotoznit' s odrazmi lic¢a od
zakladni. Na obrazku je nakreslend situacia z pohl'adu vzt'aznej ststavy vzhl'adom na
ktord je nadoba v pokoji, ako aj z pohladu ststavy, vzhl'adom na ktorG sa nadoba
pohybuje. Vypocitajte pomer Casovych intervalov potrebnych na prelet luca k opacne;j
zakladni v uvedenych dvoch pripadoch za
lT \\ //' predpokladu, ze svetlo sa §iri rychlostou ¢

a pohybujuca sa sustava sa vzdaluje
N/

rychlostou v.

RieSenie: V sustave S’, vzhl'adom na ktori nech je nadoba v pokoji, ¢asovy interval
potrebny na prelet svetelného signalu medzi zakladiami je vyjadreny vztahom
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.t
At =—.
c

V sutstave S, vzhl'adom na ktort sa nadoba pohybuje, je potrebny Casovy interval At
dlhsi, lebo svetlo pri rovnakej rychlosti ¢ musi prejst’ vzdialenost’ vyjadrenu

vzt'ahom /€% + (vAt)?, kde v je vzajomna rychlost’ ststav. Takze plati rovnost’:

c2(At)? = £ + (vAt)?,

odkial’ vypocitame interval At:
?
(A% (> —vH) =42, = M =—m—m0muoeerx, =

? 1
cJ1—v2/c?
Vysledok potvrdzuje predpokladany vztah medzi intervalmi: At > At', tj. zo
sustavy, ktora sa vzhl'adom na nadobu pohybuje, Casovy interval sa javi ako dlhsi.

At =

Priklad 15.2.2.4
Predpokladajm, ze k Marsu (vzdialenost d = 8 X 101° m) mozeme letiet’ rychlost'ou
0,5 c. Ak let v naSej sustave S zacal v Case t; = 0, v akom Case t, by sme prisli do
ciel'a? Ako by sa javil tento ¢asovy udaj na hodinach posadky kozmickej lode (t3)?
Ako by ohodnotila vzdialenost k Marsu (d") posadka lode? Zacliatok cesty ma
v S stradnicu x; = 0, koniec cesty x, = 8 X 10°m .
Riesenie:
Z pohl'adu sustavy viazanej na Zem Cas t, zodpoveda dobe letu, ktoru ziskame ako
podiel vzdialenosti a rychlosti:

d 8 x 10%m

t2=_

- — 5,333 x 10%s.
v (0,5 % 3 x 108)m/s :

Cas t} ziskame pomocou Lorentzovej transformacie:

0,5
P L 5,333 X 10° — 35558 X 8 X 10" (5333 — 4/3) x 102
2= = =

J1—(W/c)? 1 —(0,5)2 0,866

t, = 4,6188 X 10%s.

Z hladiska sustavy viazanej na pohybujucu kozmickt lod’ sa vzdialenost’ k Marsu javi
ako kratsia

d =dy1-(v/c)? =8x%x10"x 0,866 =6,9282 x 10'°m.
a tak pre trvanie letu ostaneme hodnotu

d’ 16,9282 % 1010

=T = o qgs = 46188 % 10%s,

At
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¢o sa zhoduje s Udajom t; .

Ocakavanu nulova hodnotu suradnice x, koncového bodu cesty z hladiska sustavy
viazanej na lod’ ziskame aj Lorentzovou transformaciou:

X, —vt;  8x101°—15x10°x 5333 x 102 .

J1—(w/o)? 0,866

Xy =

PrediZenie ¢asového intervalu moze nastat’ aj vplyvom Dopplerovho javu. Ak
sa zdroj apozorovatel od seba vzdaluju, pricom zdroj vysiela kratke signaly
Vv pravidelnych ¢asovych intervaloch (napr. zablesky svetla), tak pozorovatel nameria
medzi zableskami dlhsi Casovy interval. Ak by sa vSak ksebe priblizovali, tak
pozorovatel’ nameria krat$i interval. lde o d’alsi jav, ktory vsak nie je v rozpore
s tedriou relativity. Ich vel'kosti su posudené v nasledujlcej Uvahe.

Z hladiska teorie relativity, ak sa zdroj vzdal'uje od pozorovatel’a rychlostou v,
a vysiela signaly s ¢asovym odstupom At, tak pozorovatel nameria ¢asovy odstup
At = At/\J1 —v?/c?. Pri malom pomere v/c vyjadrime odmocninu prvymi dvoma

¢lenmi binomického rozvoja:
1

Tl P L
c? o 2\ c?

Pri Dopplerovom jave Vv takejto situacii na zaklade vzt'ahov zo Siestej kapitoly

(Siesteho zositka)
c+v

, v
At = At =At(1+z).

c
Ide teda o porovnanie velkosti ¢lenov v/c a v?/c?, z ktorého je zrejmé, Ze pri malom
pomere v/c sa vyraznejSie prejavi Dopplerov jav. Téato okolnost ma vyznam pri

sledovani spektier vel'mi vzdialenych galaxii.

Kontrolné otazky

1. Ty¢ pohybujuca sa v kladnom smere osi x sa javi ako kratsia. Ako sa bude javit,
ak sa bude pohybovat opacnym smerom?
2. Rovnaké tyce sa nachadzaju v dvoch inercialnych sustavach, ktoré sa navzajom
pohybuju rychlostou v . Ktora z nich sa javi ako krazsia?
3. Dvoje rovnakych hodiniek sa nachadzaju v dvoch inercialnych sustavach
vzdalujucich sa od seba rychlostou v. Ktoré z hodiniek sa oneskoruju?
4. Hodiny vzdalujiice sa od nds sa oneskorujii. Co budeme pozorovat, ak sa budii
priblizovat?
5. V ¢om je rozdiel medzi relativistickou dilataciou c¢asu a Dopplerovym posunom
frekvencie?
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15.2.3 Transformacia rychlosti

Z QGalileiho transformacnych vzt'ahov vyplyva, Ze rychlosti sa s¢itavaju tak, ako
sa ndm to javi z bezného pozorovania skladania pohybov. Michelsonov — Morleyov
pokus vSak ukazal, Ze treba najst’ iny transformacny vzt'ah.

Aj v tomto pripade budeme uvazovat o dvoch ststavach, ktoré maji vzajomne
rovnobezné stiradnicové osi, pricom ich zadiatky sa navzajom vzd’aluju pozdiz osi x,
resp. x’. V slstave Snech sa pozdiZz osi x pohybuje astica rychlostou u = dx/dt.
Pozorovatel' zo sustavy S’ nameria Castici rychlost u' = dx’/dt’, pre ktora podla
Galileiho transformacnych vztahov plati « = u - v, kde v je vzdjomna rychlost
sustav. Ako sa ukaZe, Galiletho transformacny vztah pre rychlost’ je Specialnym
pripadom Lorentzovho transforma¢ného vzt'ahu. Rychlost’ u’ vypocitame pomocou
Lorentzovho transforma¢ného vzt'ahu pre stiradnicu x” :

, dx _dt  dxdt dt
_dx d( x— vt ) dae _Vde _ drdr _Ydf _

Ux=qr " ar 1= (w2/c?) -

_\/1—(172/02) _\/1—(172/02) -
_ Uy —V E

1= @/endt

Na dokoncenie vypoctu treba eSte vypocitat’ ¢len dt/dt’, ¢o ziskame derivovanim
transformac¢ného vztahu pre ¢as (15.2.1.6):

dt dt (¢ +x'(v/c?) 1+ (w/c®H)dx'/dt) 1+ (w/cHu',
ar = ar {m} RN )
Po dosadeni do predchadzajuceho vzt'ahu postupnou Upravou dostaneme:
u,—v dt u,—v 1+ @Ww/c®)u,
T -G/ At -2/ (1= wEjcd) |

u,x[1 - (UZ/CZ)] =Uy—V+ (v/cz)uxu’x - (UZ/CZ)u'x =

)
ux

U,V
u’x(l _Cx_z) =u,—v,
a odtial’ kone¢ny vzt'ah
) Uy — v

( 2 )
Pre transforméaciu zo sustavy S° do sustavy S plati podobny vzt'ah:

u,+v

U, = (15.2.3.2)

u, v\’
(1_ sz)
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V obidvoch pripadoch vidno, Ze pri malych vzajomnych rychlostiach sustav, tj. ked’
vyraz u,v/c?<< 1, tak vzfahy sa zmenia na Galileiho transformacie rychlosti.
Z Lorentzovych transformaénych vztahov vyplyvaju aj d’alsie zaujimavé vlastnosti,
ktoré si overime na nasledujucich prikladoch.

Priklad 15.2.3.1 Dve castice sa pohybuju proti sebe rychlostami, 0,8 ca 0,7 ¢, ktoré
nameral pozorovatel' nachadzajiuci sa medzi nimi. Ak rychlost’ druhej Castice by
nameral pozorovatel viazany na prvua Casticu?

RieSenie. Castica s rychlostou 0,8c nech sa pohybuje v kladnom smere osi x ststavy
S viazanej na pozorovatela, a na tUto Casticu viazme ststavu S’, takze do vztahu
(15.2.3.1) dosadime v = +0,8c. Druha ¢astica sa potom pohybuje opaénym smerom,
takze u, = —0,7c . Po dosadeni tychto hodnét dostaneme

Uy —V —0,7c¢ —0,8¢c -1,5¢

(1 — uxzv) - [ (—=0,7¢)0,8¢c 1+ 0,56
Cc c?

Takze rychlost’ nie je vac¢sia nez rychlost’ svetla.

)

u, =

=-096¢.

Priklad 15.2.3.2 Vzhl'adom na ststavu S sa pohybuje foton rychlostou svetla, t.j.
rychlostou u, = c. Aka je jeho rychlost’ vzh'adom na ststavu S’, ktora sa vzhladom
na sustavu S pohybuje rychlostou v ?

Riesenie: Po dosadeni udajov do vztahu (15.2.3.1) dostaneme

, c—v c—v c*(c—-v)
u, = = = =C
e e
c 2

¢o znamena, Ze fotdn sa aj v ¢iarkovanej sustave pohybuje rovnakou rychlost'ou, ako
v sUstave S. Vysledok je v stlade s druhym Einsteinovym postulatom.

Druhy priklad dokumentuje skuto¢nost’, ze rychlost’ svetla nezavisi od rychlosti
inercialnej sustavy vzhl'adom na zdroj svetla, vzdy je rovnaka. Je to v zhode
s Michelsonovym — Morleyovym experimentom i s pokusom s atdbmovymi hodinami.

Z vysledného vztahu vyjadrujiceho transformaciu rychlosti vyplyva zaujimavy
vysledok — pri extrapoldcii rychlosti svetla k nekone¢ne vel'kej hodnote, vzt'ah sa meni
na Galileiho. Teda aj v tomto pripade sa ukazuje, ze klasicky vztah je Specialnym
pripadom relativistického vztahu.

Transformuju sa aj zlozky rychlosti, ktoré st kolmé na smer vzajomneho
pohybu sustav, tj. v tomto pripade kolmé na os x . Napriklad pri pohybe telesa v smere
osi y, ked’ sa jeho sradnica x v sustave S nemeni, teleso v sustavach S aj S’ prejde
rovnakl vzdialenost Ay’ = Ay, v sustave S za ¢asovy interval At, ale zo sustavy S’
sa tento Casovy interval javi ako dlhsi. To znamena, Ze pohyb v smere osi y (a gj
V smere 0si z) sa Z pohybujuicej ststavy javi ako pomalsi (vypocet je v dodatku D2).
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15.2.4 Casopriestor, §tvorvektory

V kartezianskej stradnicovej sustave, Vv trojrozmernom priestore, pouzivame na
vyjadrenie polohy bodu v priestore tri stradnice: x, y, z. Pri opise dejov v tedrii
relativity sa aj ¢as pouziva ako suradnica, ktora je prostrednictvom Lorentzovych
transformécii zviazan s kartezianskymi sturadnicami. Tak vznika akysi §tvorrozmerny
Casopriestor, ktorého suradnicami su

x, y, z lIct, (15.2.4.1)

kde sa ako $tvrta suradnica nepouziva priamo ¢as, ale stéin Casu a rychlosti svetla.
Tym aj tato stiradnica nadobuda rozmer dizky a nie ¢asu. Z dovodov matematickej
vyhodnosti sa k tejto stiradnici navyse pripaja imaginarna jednotka i . Styri stradnice
V Casopriestore Uréuju nielen polohu, ale aj ¢asovy okamih bodovej udalosti. Druhymi
mocninami suradnic bodovej udalosti st vyrazy

x%, y? z?, — c?t? (15.2.4.2)

ktoré maji ta vlastnost, ze ich sucet sa nezmeni, ked suradnice bodovej udalosti
transformujeme do inej inercidlnej sdstavy prostrednictvom Lorentzovych transfor-
maécii. Ide 0 podobnu vlastnost’ ako v trojrozmernom priestore, kde sa pri transformécii
polohoveho vektora do pootocenej suradnicovej sustavy nezmeni (zachova) sucet
Stvorcov jeho Kartezianskych suradnic x? + y? + z2, rovnajlci sa druhej mocnine
($tvorcu) jeho dizky. Inymi slovami — pri takejto transformacii sa dizka vektora
nezmeni. Z tejto uvahy vyplyva, Ze aj sturadnice (15.2.4.1) méZeme povazovat za
suradnice vektora, pravda v stvorrozmernom ¢asopriestore.

O invariantnosti suctu Stvorcov suradnic (15.2.4.2) vzhl'adom na transformaciu
do inej inercialnej sustavy sa presved¢ime tak, ze vSetky suradnice v sU¢te nahradime
suradnicami ,,¢iarkovanymi*, vyuzitim Lorentzovych transformaécii (15.2.1.6):

x + vt’ t+x'(v/c?) r
V1—=@?/c?) J1=w?/cnl

Jednoduchym vypocétom sa mdzete presvedCit, ze sucet vyrazov v hranatych zatvor-
kach poskytne vysledok:

l x + vt z_czlt’+x'(v/cz)r _ 22
J1= (2/c?) J1= w2 /c?)| '

Po doplneni suradnic y’ a z’ ktoré sa nemenili, dostavame oc¢akavany vysledok:

2
x2+y2+zz—c2t2:[ ] +y'2+z’2—czl

x?2+y%2+ 22 —c?t? =x?+y? + 2% — c?t? (15.2.4.3)

b114

,»Vzdialenost* medzi dvoma bodmi vV S§tvorrozmernom cCasopriestore, t.j.
,vzdialenost* medzi dvoma bodovymi udalostami, Vv tedrii relativity nazyvanu
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interval , sa pocita analogickym spdsobom, ako Vv trojrozmernom priestore. Jej druhd
mocninu vyjadruje vztah

s = (x; —x1)* + (Vo = y1)* + (2, — 21)% — (L, — t1)? (15.2.4.4)

Sdradnice (15.2.4.1) su stradnicami bodu v $tvorrozmernom ¢asopriestore, teda
suradnicami stvorvektora polohy. Zauzivalo sa vSetky oznaCovat’ jedinym pismenom
x, a odliSovat’ len indexmi:

Xy =X, X =Y, X3 = Z, X4 = ict. (15.2.4.5)

Pre takto zavedené suradnice nadobldaju Lorentzove transformécie trocha

odlisny tvar. Ked’ zavedieme oznacenie B = 1/4/1— (v/c)?, potom transforméacie
vyzeraju takto:

, |V , , ) v
xlzﬁ(xl-l_lzxél-)r X2 =Xy, X3 = X3, X4=ﬁ(x4—lzx1)
(15.2.4.6)

Aj dalsie vektorové veliCiny sa V teorii relativity zavadzaja ako Stvorvektory,
napriklad stvorvektor rychlosti, hybnosti. ¢i pridovej hustoty.

Pri $tvorvektore rychlosti sa jeho prva suradnica zavadza vztahom (a
podobne aj druha a tretia):

dx dx u

NPT G TR 1= (w/o?

a Stvrta suradnica vzt'ahom

=Bu,  (1524.7)

_ icdt _ ic
Y dnf1- (/o2 J1- (w/c)?

Vyraz dty1— (v/c)? predstavuje tzv. viastny cas, presnejSie vlastny casovy
interval, ¢im sa rozumie ¢asovy interval pozorovany v inercialnej sustave spojenej s
pohybujdcou sa casticou. Vlastny ¢as je invariantny, ¢o spolu s invariantnostou
Stvorvektora polohy zabezpecuje invariantnost’ Stvorvektora rychlosti.

T si overime tak, ze najprv vypocitame druhtt mocninu velkosti Stvorvektora
rychlosti castice, ktora sa Vv sUstave S pohybuje rychlostou u, (predpokladame Ze
druha a tretia suradnica, st nulové, ¢o neovplyvni vysledok). Pre stucet stvorcov prvej
a Stvrtej siradnice Stvorvektora rychlosti tak dostaneme:

(W)? + (ug)? = (Buy)?® + (Bic)?* = p?(ui — c?) =

= Bic. (15.2.4.8)

uz —

c
1— (v2%/c?)

2

(15.2.4.9)

Invariantnost’ vel'’kosti Stvorvektora rychlosti znamena, Ze v inej inercialnej sustave
saget (u'1)? + (u'4)* poskytne rovnaky vysledok. Pri vypolte pouZijeme
transformacné vztahy (15.2.4.6) aplikované na Stvorvektor rychlosti (vztahy pre druht
a tretiu sdradnicu vynechavame, lebo sa transformaciou nemenia) a vyuzijeme aj
definicie (15.2.4.7) a (15.2.4.8) suradnic Stvorvektora rychlosti:
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v 1%
u,]_: ﬁ(u1+l_u4), u’4=ﬁ(u4_l_u1)
Cc Cc

u;, = pPu,, u, = Pic.

Pre stcet Stvorcov ¢iarkovanych suradnic tak dostdvame:

v? v v? v
(u’1)2 + (u'4)2 = ﬂz {(u1)2 - ? (u4)2 + 21'27«117«14 + (U4)2 - C_z(u1)2 - 21’;”1”4}

= p? {(u1)2 [1 - :_2] + (uy)? [1 - %]} = (uy)? + (uy)®

Vysledok ukazuje, Ze transformaciou do inej inercialnej sustavy sa velkost
Stvorvektora rychlosti nemeni, 7e hodnota vyjadrena vztahom (15.2.4.9) sa pri
transformécii zachovava.

Stvorvektor rychlosti je teda vztahmi (15.2.4.7) a (15.2.4.8) dobre definovany,
lebo jeho velkost’ sa Lorentzovymi transformaciami nemeni. Za predpokladu, ze u, =
v, teda ze ,Ciarkovand® sustava je spojena s pohybujicou sa Casticou, pre sucet
druhych mocnin stiradnic $tvorvektora vychadza hodnota —c?2.

Dalsie $tvorvektory budl opisané v nasledujcich ¢lankoch.
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15.3 Mechanika v tedrii relativity

Nielen dizky a Gasové intervaly sa menia pri pozorovani z roznych inercialnych
sustav, ale aj hmotnost’ telies. Zo vztahu (15.2.3.1), vyjadrujiceho transformaciu
rychlosti vyplyva, ze zrychlenie telies pozorované z rozli¢nych inercialnych sustav, nie
je rovnaké. To je v rozpore s klasickou mechanikou, s Galileiho transformaciami,
podla ktorych je zrychlenie vo vSetkych inercialnych sustavach rovnaké. Preto
mozeme oCakavat’, ze aj Newtonov zakon sily z hl'adiska teorie relativity bude mat iny
tvar. V tejto cCasti bude najprv odvodena zavislost hmotnosti telies od rychlosti,
v d’alSom ¢lanku vztah medzi hmotnost'ou a energiou, a v tretom ¢lanku vztah medzi
hybnost'ou a energiou. Pritom vyjadrenie sily ako derivacie hybnosti podl'a ¢asu
zostava rovnaké ako v klasickej mechanike, ale rozdiel je v zavislosti hmotnosti od
rychlosti.

15.3.1 Zavislost’ hmotnosti od rychlosti

V tomto ¢lanku bude odvodeny vztah, podla ktorého sa pozorovana hmotnost
telesa srasticou rychlostou telesa zviacSuje, pricom ako najmen$iu ju uréi
pozorovatel’, vzhI'adom na ktorého je teleso v pokoji. Ked’ sa teleso zacne pohybovat’,
pozorovatel’ zaregistruje zva¢senie jeho hmotnosti.

Budeme uvazovat’ o dvoch rovnakych telesach A, B, nehybne umiestnenych
v inercialnych sastavach S a S’, ktoré sa navzajom pohybuji rychlostou v. Teleso A
je umiestnené v zaciatku sustavy S, teleso B v sustave S’, na jej osi y’ vo vzdialenosti
Y od zaciatku sustavy (obr.15.3.1.1). Pripomenime si, ze podla Specidlnych
transformacnych vztahov (15.2.1.6) y’ = y, takze teleso A ma v obidvoch sustavach
tato stradnicu nulovu a teleso B sdradnicu Y.

I
y B y
g S, /_:\___
u: 1
° v Ua Y
|
| ———> A
g L. --—--- A4 S
X X Obr.15.3.1.1

Ked’ st zaciatky sustav v istej vhodnej vzajomnej vzdialenosti, telesam udelime
(z pohl'adu svojich sustav) rovnaké rychlosti v smeroch osi 1y, resp. y’ tak, aby sa
stretli v strede vzdialenosti Y, apo dokonale pruznom zraze vratili do pdvodnych
poldh. Rychlost’ udelenu telesu A oznaéime ako u, , takZe na navrat potrebuje Casovy
interval T =Y /u, . Teleso B vststave S’ na navrat do povodnej polohy potrebuje
rovnaky Casovy interval (sustavy st rovnocenné), vyjadreny vztahom T'=Y/u'p.
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Vzhl'adom na rovnocennost’ sistav sU rychlosti telies, aj Casové intervaly potrebné na
navrat telies do povodnej polohy, z pohl'adu svojich sustav, rovnaké. Casovy interval
T ’, potrebny na névrat telesa B do p6vodnej polohy, z pohl'adu sustavy S je vSak dlhsi
nez T, lebo sa uplatni dilatacia ¢asu. A naopak, rovnako vacSim sa javi Casovy interval

T zo sustavy S’. Preto z pohl'adu sustavy S plati vzt'ah

T
T’ = (15.3.1.1)

J1— (w2/c?)

To sa prejavi aj na vel'kosti rychlosti v smere 0si y . Zatial’ ¢o rychlost’ telesa B

vzhladom na ststavu S’ je u'p (aje rovnako velka ako rychlost wuy, telesa A
vzhl'adom na suastavu S), jej vel'kost ug vzhl'adom na ststavu S je menSia (vztah

15.2.3.2):
ug = u'g1— (w?/c?) . (15.3.1.2)

Hmotnost’ telies teraz posudime prostrednictvom zékona zachovania hybnosti,
ktorého platnost’ predpokladame. Na telesa A a B pri zrazke neposobili vonkajsie sily,
takZe hybnost’ stistavy dvoch telies by sa pri zrdzke nemala zmenit’. Podl'a povodného
predpokladu sa teleso A do vychodiskovej polohy vratilo s povodnou rychlostou uy,
a teda aj s povodnou hybnostou. Preto usudzujeme, Ze aj teleso B malo pred zrazkou
v smere 0si y rovnakt hybnost. Tato skuto¢nost’” zapiSeme rovnostou vyjadrujicou
zakon zachovania hybnosti, pricom zakon zapiSeme z pohladu sustavy S, t.j. vSetky
veli¢iny v lom vystupujuce, sa vztahuju na tto ststavu:

mAuA == mBuB .

Rychlost’ ug nahradime podl'a vzt'ahu (15.3.1.2):

My, = MpU'p+/1— (w?/c?),

ale uz vieme, Ze velkosti rychlosti u'z a u, S0 rovnaké. Po ich vykrateni ziskame

vzt'ah
my

J1— w%/cd)’

ktory uz vyjadruje zavislost hmotnosti telesa od rychlosti. Rychlost’ u, moze byt totiz

mB=

celkom mald, takze m, mézeme Vsustave S povazovat za hmotnost’ nepohy-
bujiceho sa telesa, zatial’ ¢o teleso B sa vzhl'adom na sustavu S pohybuje navySe aj
vel'kou rychlostou v. Telesa sme na zaciatku vahy povazovali za rovnaké, takze
vzt'ah pre zavislost’ hmotnosti od rychlosti prepiSeme do kone¢ného tvaru

mO
m = (15.3.1.2)

J1— (w2/c?)’

kde m, predstavuje tzv. pokojovit hmotnost’ telesaa m jeho hmotnost' v pripade, ze
sa vzhl'adom na pozorovatela pohybuje rychlostou v.
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Tento vysledok, ktory je v rozpore s klasickym ponimanim hmotnosti, bol
vierohodne experimentdlne overeny uz vroku 1908 Alfredom Buchererom, ktory
zistil, Ze podiel elektrického naboja a hmotnosti elektronu sa s narastajlcou rychlost'ou
elektronu zmensSuje. Pritom naboj elektronu je relativisticky invariant (vo vsetkych
inercialnych sustavach je rovnako velky — pozri ¢lanok 15.4.3), takze vysledok
experimentu sa da vysvetlit’ iba zva¢Sovanim hmotnosti. Odvtedy bolo uskuto¢nenych
mnoho pokusov potvrdzujucich tato zavislost’ s vysokou presnostou. Potvrdzuje sa aj
v modernych urychlovacoch elementarnych castic. Ked rychlost’ Castice dosahuje
desat’ percent rychlosti svetla, jej hmotnost’ vzrastie iba o 5 tisicin, ale pri rychlosti 0,9
c narastie na dvojnasobok.

Na z&ver mozno ani nie je potrebné uviest poznamku, Zze zmena hmotnosti
telesa, 0 ktorej sa hovori v tedrii relativity, neznamena zmenu poctu atdomov, z ktorych
sa sklada, ale zmenu jeho zotrvaénych vlastnosti.

15.3.2 Suvislost’ hmotnosti a energie

Kineticka energia sa v klasickej fyzike vyjadruje vztahom E, = (1/2)mv2.
Pritom sa samozrejme predpokladd, Ze hmotnost’ telesa je nemenna. V predoslom
¢lanku bol vSak odvodeny vztah, vyjadrujuci narast hmotnosti telies pri zvacSeni
rychlosti vzhl'adom na pozorovatela a tak klasicky vzorec neméze byt korektny pri
vel'kych rychlostiach, aké nadobudaji napr. elementarne Castice v urychl'ovacoch.

Castica ziskava kineticku energiu urychlovanim, pricom potrebnu pracu konajt
urychl'ujace sily F. Vychodiskovy vztah na vypocet zmeny kinetickej energie bude
preto rovnaky ako v klasickej fyzike:

2
AEk = J P;C dx ,
1
kde ¢isla 1 a2 predstavuju zaciatocni a koncovl suradnicu miesta pdsobenia sily,
v tomto pripade pozdiz osi x. Za silu do integralu dosadime derivaciu hybnosti Gastice

podla casu  (vztah 3.1.3.4 vzoSitku o dynamike hmotného bodu), pricom
predpokladame, Ze sa pohybuje v smere 0si x rychlostou u:

2 2 d(mu) u
AE, = | E.dx = udt = | ud(mu).
1 pdt 0

Keby sme pocitali dalej, predpokladajic ze hmotnost m je konStantnd, dostali by

sme klasicky vzorec kinetickej energie. Do integralu vsak za hmotnost m dosadime
vzt'ah (15.3.1.2), a tak treba vypocitat’ integrél
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u myu
= d , 5.3.2.
AE, fou < 1—(u2/c2)> (15.3.2.1)

kde integraéné medze predstavuji interval od zac¢iato¢nej nulovej, po kone¢nt
rychlost’ u.

Pri vypocte integralu pouzijeme pravidlo (uv)' =u'v+uv’, resp. jeho
integralnu podobu, schematicky zapisant v tvare fu’v =uv— [uv"

u myu myu
f ud j du
0 J1—(u?/c?) \/1—(u2/c J1—(u?/c?)
(15.3.2.2)
Zostavajuci integral sa vypogita substitiiciou 1 — (u?/c?) = z2, po ktorej dostaneme:

V1-(u?/c?) zdz
= —f mOCZT = —m,c? [\/1 — (u?/c?) - 1] :
1

f 1—(u2/c

Vysledok dosadime do vztahu (15.3.2.1)

2

AE, = ot + m,c? [wll — (u?/c?) — 1]

1 — (u?/c?)

mou® + myc?[1 — (u?/c?)] ,
= —myc? =

J1—(u?/c?)

2

m,C
J1—(u?/c?)

Integrél (15.3.2.2) sme pocitali v medziach od 0 po u, takze sme vypocitali celkova
kinetickl energiu. Preto moéZeme napisat’ vysledny vztah:

AE, = —my,c? = mc? —myc?.

E, = mc? —m,c?. (15.3.2.3)
Ked’ ho napiSeme v tvare:
mc? =m,c? + Ej
mdzeme ho interpretovat’ tak, Ze vyraz
E = mc? (15.3.2.4)

predstavuje celkovl energiu, E, kinetickii a E, = m,c? tzv. pokojovl energiu
(Castice, telesa). Podla tohto vzt'ahu hmotnosti 1 gram zodpoveda obrovska energia
E =9x 10 Ws =2,5x107 kWh.

Vyjadrenie kinetickej energie Castice vztahom (15.3.2.3) bolo potrebné pouzit’
napriklad pri vysvetleni Comptonovho javu (pozri dodatok D4).

Vzt'ah (15.3.2.3) vyjadrujuci kineticku energiu prechadza do klasického tvaru
uvedeného na zaciatku tohto ¢lanku v pripade, ked’ ¢astica (teleso) sa pohybuje malou
rychlostou v porovnanim s rychlostou svetla,. Presvedéime sa o tom binomickym
rozvojom vztahu:
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u?\ 2 1u?
E, = mc? —myc? = m,c? (1 ——> —m,c? = m,c? <1 +§§ + ) —my,c? =

1 2
Ek = Emou .
Aj vtomto pripade teda plati, ze klasicky vztah je S$pecidlnym pripadom
relativistického vztahu.

Albert Einstein vo svojej knihe The Meaning of Relativity o0 vztahu E = mc?
napisal: , Hmotnost a energia sa Vo svojej podstate zhoduju, je to iba rdézne
vyjadrenie toho istého*.

Max Born v knihe o Einsteinovej tedrii relativity k tomuto vztahu uvadza:
,Hmota Vv najsirsom vyzname tohto slova (vrdatane svetla a inych foriem tzv. Cistej
energie) ma dve fundamentalne vlastnosti — zotrvacnost, meranii jej hmotnostou
a schopnost konat prdacu, meranu jej energiou. Tieto dve vilastnosti su si navzajom
prisne umerné. Keby kdekolvek magnetické ci elektrické polia nahromadili energiu,
tato energia je vidy spojend so zotrvacnostou. Elektrony a atdmy su prikladom
gigantickej koncentrdcie energie.

Podla vztahu E =mc? sa po&ita zisk energie pri jadrovych reakcich,
prebiehajucich napriklad v jadrovych reaktoroch, ale aj vézbova energia atdmovych
jadier. Stabilné atomové jadro ma vzdy menSiu hmotnost’ nez sucet pokojovych
hmotnosti protonov a neutronov, z ktorych sa skladd. Rozdiel tychto hmotnosti
vynasobeny Stvorcom rychlosti svetla sa rovna energii, ktorou su Castice v jadre spolu
viazané. Takto vypocitant energiu treba jadru dodat’, aby sa rozpadlo na svoje sucasti.

PouZivanie vztahu E = mc? pri jadrovych reakciach je nevyhnutnostou, ale
V podstate plati aj pri chemickych reakciach. Tam v8ak ide o také malé zmeny energie,
ktoré sa nedaji overit zmenou hmotnosti reagujucich atdémov. Pri chemickych
reakciach ide o zmeny energie nanajvys na drovni par elektronvoltov, pri jadrovych
reakciach su to miliony elektrénvoltov. V atdme vodika je elektron viazany k jadru — k
protonu, na jeho uvolnenie z atdbmu treba dodat’ energiu, ¢o znamena, ze atom vodika
ma mensiu hmotnost’ ako sicet hmotnosti elektronu a protonu. Aj v tomto pripade
vSak ide o energiu niekol’kych elektronvoltov. Principidlne — teply ¢aj ma z naSho
pohl'adu vac¢siu hmotnost’ ako studeny, lebo v teplom caji sa molekuly pohybuju
rychlejSie ako v studenom ateda maju vacsiu hmotnost. Su to vSak prakticky
nemeratel'né rozdiely.

Relativistické vyjadrenie kinetickej energie Castice (15.3.2.3) bolo potrebné
pouzit’ napriklad pri vysvetleni Comptonovho javu (pozri dodatok D4).
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15.3.3 Suvislost’ energie a hybnosti

V predchédzajucom ¢lanku bol odvodeny vyraz vyjadrujuci celkovl energiu
pohybujuicej sa Castice.
E = mc? (15.3.3.1)

Ked’ si uvedomime, ze hmotnost’ m zavisi od rychlosti u a tto zavislost’ dosadime
do vzorca, dostaneme:
2 2
m,c u
E=mc?=—nrs = E2<1——2>=m?,c4.
2 c
1 -
2
DalS§imi tipravami postupne dostaneme:

u? u?

E? —E*—=mjc* = E*’-m’c*—=mjic* = E*-m*u’c® =mic*
c c
Stcin p = mu predstavuje hybnost’ Castice, ktord sa vzh'adom na inercidlnu sustavu
pohybuje rychlostou u a ma hmotnost’ m, takZe posledny vztah moZeme prepisat’

E? — p2c? = m2c*
a nakoniec vyjadrit’ energiu:

E = mZc* + p2c?. (15.3.3.2)

Vysledny vzt'ah poukazuje na skuto¢nost, Ze celkova energia Castice zavisi od jej
pokojovej hmotnosti m, a od jej hybnosti.

Stvorvektor hybnosti sa zavadza vztahmi:

~ imc¢* E
P1 =MolUy, P =MylUy, P3 =MylUz Py = fm,ic = - = l?
(15.3.3.3)

kde E je energia Castice. Pokojova hmotnost m, je invariant, takZe vynasobenim
stiradnic Stvorvektora rychlosti touto hmotnost'ou sa invariantnost’ vektora nestrati.

Suradnice Stvorvektora sily sa zavadzaji vztahom: F; = (dp;)/dt, takze

F, = m, 34 r, = L9E (15.3.3.4)
1= OdT,...., 4—CdT,

kde dr je diferencial vlastného Casu.

Zo vztahu (15.3.3.2) mozeme ziskat’ zaujimava informaciu o fotone. Foton ma
pokojova hmotnost’ nulovt, takze v jeho pripade m, = 0, ¢o po dosadeni do vzt'ahu
poskytne E = pc. Foton ma vSak energiu hf, kde h je Planckova konstanta
a f zodpovedajuca frekvencia, takze ak hf = pc, potom vztah

f h

dava do suvislosti hybnost p foténu a jemu zodpovedajicu vinovii dizku A . Hybnost
je v klasickej fyzike definovana ako suc¢in hmotnosti ¢astice a jej rychlosti. Fotdn sa
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pohybuje rychlostou svetla a tak jeho hybnost’ sa pokusime zapisat’ v tvare mg c , kde

m¢ by malo predstavovat’ hmotnost’ priradent fotonu. Potom méZeme napisat’ vztah

h h  hf
me=Z = mf=a= C_Z

(15.3.3.6)

Takto vypocitana hmotnost’ fotonu nie je fiktivna, lebo foton interaguje
s gravitatnym polom (jeho draha sa v silnom gravitatnom poli zakrivuje) a ma aj
zotrvacné vlastnosti, ktoré sa prejavuju napriklad tlakom svetla.

Priklad 15.3.3.1
Gul’ka letiaca kolmo na rovinu steny uviazla

szfﬁ:‘}7";'3;733,’,3‘)7*.‘:‘ vnej avytvorila jamku. Situaciu postdime
SRR e z hladiska  dvoch  vztaznych  sustav.
uyT { Vzhladom na sastavu S nech je stena

y y v Vv pokoji, priCom os y nech je kolméa na rovinu
‘ - steny. Zo sustavy S’ , ktora sa rychlost'ou

X X" v pohybuje rovnobezne srovinou steny, sa

doba preletu At gulky z vychodiskovej
polohy po stenu javi ako dlhsia v porovnani s dobou At, pozorovanou Vv sustave S.
Preto rychlost’ gul’ky je z hl'adiska sustavy S’ mensia. Hibka jamky sa v8ak z pohladu
obidvoch sustav javi ako rovnakd (y = y’). Presved¢ime sa, Zze dovodom je rovnaka
hybnost” gul’ky z pohl'adu uvedenych dvoch sustav, a teda rovnaky je aj impulz
odovzdany stene.

RieSenie: Predpokladdme, ze rychlost u, gulky vzhladom na ststavu S nie je
relativisticka, takze jej hmotnost’ v sustave S je vlastne pokojovou hmotnostou m,,.
Preto hybnost’ p gul’ky v tejto slstave je p = m,u,, .
Vzhladom na ststavu S’ ma gul’ka hmotnost m' = m,/ \/TZ/CZ (vzt'ah 15.3.1.2),
pritom rychlost’ u’,, = uy\/m (dodatok D2), takZe ma hybnost’
p'=mu', = Frmotty
B

Treba poznamenat’, ze hybnosti st rovnaké len v smere 0si y. Zatial’ o v Smere 0Si x

=MylUy, =p.

ma gul’ka v ststave S rychlost’ nulovy, tak v sustave S’ ma rychlost’ v. Preto zlozky
hybnosti v tomto smere nie su rovnaké.
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15.4 Relativisticka elektrodynamika

V predchadzajicich c¢lankoch sme sa mohli presved¢it, aké zmeny do
mechaniky prinaSa teoria relativity, Specidlne Lorentzove transformacie. Zatial' ¢o
podla Galileiho transformacii sa zrychlenie Castice a teda ani Newtonov zakon sily
prechodom do inej inercialnej slstavy nemeni (pozri 15.1.3.3), pri Lorentzovych
transformaciach to neplati. Meni sa pri nich zrychlenie, tym aj sila, a ani hmotnost’ nie
je invariantna. V elektrodynamike je to naopak — Lorentzove transformécie zachova-
vaju tvar Maxwellovych rovnic, v ktorych je skoncentrovana cela nauka o elektromag-
netickych poliach, ¢o v8ak neplati o Galileiho transforméaciach.

Nasledujtci ¢lanok sa zaobera Lorentzovymi transforméaciami veli¢in charakte-
rizujucich elektromagneticke pole. Vysledkom bude napriklad zdévodnenie poznatku,
ze zatial’ ¢o vo vlastnej inercialnej sustave elektricky ndboj vytvara iba elektrostatické
pole, tak toto pole sa z inej, pohybujlcej sa sustavy javi zlozitejSie, pozostava aj
z magnetického pol'a. Ukaze sa, ze elektrické a magnetické polia si iba dvoma
strankami jedinej reality, zavisiace od pohybu pozorovatel'a vzhl'adom na zdroje
tychto poli.

15.4.1 Transformacia vektorov EaB .

V tomto ¢lanku budi odvodené transformacné vztahy vektorov intenzity
elektrického pol'a E a magnetickej indukcie B . Zakladnou poziadavkou pritom bude
kovariantnost’ Maxwellovych rovnic, t.j. zachovanie ich tvaru pri transformacii do inej
inercialnej sustavy. Budeme vychadzat” z Maxwellovych rovnic opisujacich elektro-
magnetické polia vo vakuu (¢lanok 11.2.4 v zositku 11), ktoré maju takyto tvar:

0B
divE =0, divB= 0, rotE=-—, r0otB=——.
ot c? ot

Lorentzove transformacie, tak ako sU uvedené v ¢lanku 15.2.1, st zapisané podl'a
jednotlivych suradnic, a ak ich chceme aplikovat’ na Maxwellove rovnice, tak aj tieto
musime rozpisat’ tak, aby v nich vystupovali derivacie podla jednotlivych suradnic,
nie iba znacky div a rot. Po ich rozpisani vznikne zo $tyroch az o0sem rovnic. Z
poslednej z uvedenych Maxwellovych rovnic ziskame tri rovnice:

10E, 0B, 0 10E, 0B, OB 19E, 0B, 0B,

) %@
c2at dy 9z’ B

zZ
_ — _ 3) —
c? ot 0z ox’ ®) c?2at ox Oy’

ale z prvej uvedenej rovnice iba jednu, lebo je to v podstate skalarna rovnica
(divergencia vektorovej funkcie poskytne skalarnu funkciu):
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0E, OE, OE,

(4) ox + 3y + e =0.
Zo zvys$nych dvoch Maxwellovych rovnic dostaneme d’alSie Styri skalarne rovnice:
%) aaix - aaiy - %b;z O a(j:y - ?3% - aaix - D aalj:z - aa% - aaiy’
®) 0B, N 0B, N 0B, _o.
Ox dy 0z

Dalsou tulohou je transformacia tychto rovnic do ,giarkovanej* inercialnej
sustavy, prostrednictvom Lorentzovych transformécii. Vystupuja v nich parciélne
derivacie, pri ktorych budeme stradnice vektorov E,,E, ,E,,B,,B, , B, chipat ako
zlozené funkcie ¢iarkovanych a neciarkovanych stradnic, ¢o zapiSeme v symbolickom
tvare:

f=flx'"(xyzt), y(xyzt), z'(x,y,z2t), t'(xyzt)]

Uvaha o parcidlnych derivaciach takejto funkcie s vyuzitim Lorentzovych
transformécii (pozri dodatok D3) vedie k rovniciam (d) a (e):

of of v of

o Pow " Page @
of of of
E—ﬂﬁ—ﬂv@- (e)

kde B =1/41— (v/c)?. Tieto rovnice pouzijeme pri transformacii Maxwellovych
rovnic. Za¢neme rovnicou (1)

10E, 0B, 0B,

c2 ot 9y 0z’

do ktorej dosadime prislusné parcialne derivacie:

1 0E, _vOE, 0B, 0B

L _ _ _ 95y
c?’ ot c?dx' ay' az"(g)

Nebyt' druhého ¢lena na Tavej strane tejto rovnice, takmer by uz mala rovnaky tvar
v ¢iarkovanej ststave, ako v ne€iarkovanej (keby sme eSte suradniciam vektorov E a B
pridali ¢iarky). Druhy ¢len nahradime pomocou rovnice (4), ktord po transformacii ma
tvar:

0E, v 0E, OE, OE,

-B—= =0. (h
ox' c? ot’ + ay’ +62’ (®)

B

Z rovnice (h) vypoc¢itame vyraz B(0E,/dx') adosadime do rovnice (g), atak po
kratkej Uprave ziskame rovnicu

6_12‘2% - aiy' HE :—ZEy)] - % |5 (B, - :—ZEZ)] (15.4.1.1)
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Tato rovnica ma uz fakticky zhodny tvar s rovnicou (1), pravda ak zapiSeme nasle-
dujuce vztahy:

v v
Ex=Ey, B, = [B (BZ - C_zEy)] , By = [ﬁ (By - C_zEz)];
ktoré povazujeme za transformacné vztahy suradnic vektorov E a B. Transfor-

movanim dalSich Maxwellovych rovnic ziskame nakoniec kompletny subor
transformacnych vztahov pre stiradnice vektorov E a B:

g=f, Be—2Y g Latvh (15.4.1.2)
N e O AN R 5 E o
1% 1%
By + 2 E, B, — 2 E,
B.=B,, B Bl=—C " (154.1.3)

Zo ziskanych vztahov vidno, Ze ak napriklad v jednej inercidlnej sustave sa
pozoruje iba elektrostatické pole (magnetické pole nulové, tj. B, = B, = B, = 0),
v inej inercialnej sustave sa pozoruju obidve polia. To ma celkom racionalny doévod.
Ak tieto polia su generované jedinym elektrickym nabojom, tak v ststave, vzhl'adom
na ktoru je v pokoji, sa pozoruje iba elektrostatické pole. Vzhl'adom na int inercialnu
stistavu sa vSak naboj pohybuje rychlostou v, ¢im v tejto sustave vznika elektricky
prad, ktory vytvara aj magnetické pole. Zo vztahov dalej vyplyva, Ze gulovo
symetrické elektrostatické pole v sustave, vzhl'adom na ktori je naboj v pokoji, sa
Z inej sustavy uz javi inak, lebo zlozka intenzity pol'a v smere osi x sa nezmeni, ale
Vv smeroch osi y a z sa intenzita zvacsi, ¢im sa gul'ova symetria porusi.

V nasledujucom c¢lanku budda uvedené niektoré dalSie dosledky plyndce
Z tychto transformaénych vztahov.

15.4.2 Suvislost’ Coulombovho a Biotovho-Savartovho zakona

V tomto ¢lanku sa presvedCime, ze ak je v sustave S elektrostatické pole
nepohybujuceho sa naboja vyjadrené pomocou Coulombovho zakona, tak magnetické
pole, vyvolané tymto ndbojom v ststave S’, ktord sa
vzhl'adom na naboj pohybuje rychlostou v, je v sulade
s Biotovym-Savartovym zakonom.

Umiestnime elektricky naboj velkosti @ do
zaciatku suradnicovej sustavy S. V tejto sUstave naboj
vytvara len elektrostatické pole. V bode A, ktory je od
Obr. 15.4.2.1 zaciatku sustavy vzdialeny o r, alezi v rovine surad-

nicovych osi y, z, ur¢ime intenzitu tohto pol'a. Vektor E
intenzity elektrostatického pol'a ma v tomto bode sdradnice
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g cos ¢ . (15.4.2.1)

Q
—sing, E,=
n ¢ . 4me,r?

4me, 1?
Velkost’ vektora E v bode A je

E,=0, E, =

Bl = (€0 + (8 + (5.7 = s

Z pohladu sustavy S’, ktord sa pohybuje v smere osi x rychlostou v, savbode A
elektrostatické pole javi inak. Podla transformaénych vztahov (15.4.1.2) ma vektor E’
takéto sdradnice:

: , Q . , Q
Ex=E,=0, E,=pE, = ﬂ4‘l‘[801'_2 sing, E,=pE,= ﬁ4nsor_2 cos ¢ .
(15.4.2.2)
a ak vypocitame velkost” vektora E’, dostaneme vysledok
5 = [0+ @+ 2= p s
Y 41te, T2

To znamend, Ze vektory E a E’ nemaju rovnaka velkost, a ako uZz bolo uvedené
vySSie, VsUstave S’ pole nie je gul'ovo symetrické.

Z pohl'adu sustavy S’ sa v bode A pozoruje aj magnetické pole, s takymito
suradnicami vektora magnetickej indukcie:

! ’ v Q Ho QU , Uo Qv
By=0, B,=§8 —cosqbzﬂaﬁcosqb, BZ=—BET—Zsm¢,

c? 4me, 1?
(15.4.2.3)
pri¢om sme pouzili vztah 1/c? = e,u, mezi rychlostou svetla c, elektrickou

konStantou &, a magnetickou konStantou  u, . Pre vel'kost’ vektora B’ v bode A
potom dostaneme
_ gtV

B’ —_—,
41 12

(15.4.2.4)
¢o je vzt'ah vel'mi pripominajtici Biotov—Savartov vzorec. Sluzi na vypocet indukcie
magnetického pola v okoli pohybujiceho sa elektrického naboja, pricom pri beznych
rychlostiach nélbojovIE napriklad vo vodicoch elektrického pradu, parameter £ sa len
zanedbatel'ne 1i8i od hodnoty 1. Ked’ vynechame tento parameter a namiesto naboja Q
vo vzt'ahu napiSeme AQ , potom si¢in vQ moZeme nasledovne upravit’:

40 = A{)A —AQAf = [A?
vAQ = pAQ =g At =14,
¢o uz je vyraz vystupujuci v Biotovom — Savartovom vztahu (vztah 10.2.1.1
v kapitole o magnetickom poli)
Ho 1dt
= Er—z sy .
Vzhl'adom na Specidlnu polohu bodu A v uvazovanom pripade, siny = 1, takze sme

dospeli k zhode s Biotovym — Savartovym zakonom.
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Podrobnejsie si este vSimnime smer vektora B’. Na obrazku je zndzornena
vztazna sustava S, v rovine papiera lezia siradnicové osi y a z, 0S x Smeruje za
papier.

<
/
[pep———— -— e

1
1
|
1

o

‘<'\

B,’~-E,, By’~E, Obr.154.2.2

Zo vztahov (15.4.2.2) a (15.4.2.3) vyplyva, ze platia nasledujice Umernosti tykajuce
sa vel’kosti suradnic vektorov E a B’:

B,~E,, By~ E,

ako je to zndzornené aj na obrazku. Vektor B’ méa smer doty¢nice kruznice, tak ako
v okoli priameho vodica elektrického pradu. Sustava S’ sa pohybuje smerom za
papier, takze (kladny) ndboj, umiestneny v zaciatku sustavy S, sa vzhladom na
stistavu S’ pohybuje pred papier. Stym je vsulade aj smer vektora B’, uréeny
pravidlom pravej ruky.

Z vysledku vidno, ze elektrostatické pole a magnetické pole su vlastne len rézne
stranky jediného elektromagnetického pola a Ze konkrétna vnimana podoba zavisi od
vzajomného pohybu pozorovatela a zdrojov tohto pola, t.j. od elektrickych ndbojov.
Suvislost’ tychto poli umoznuje zaviest tzv. Stvorpotencial — pozri nasledujuici ¢lanok.

Priklad 15.1.2
Dva kladné rovnako vel'ké naboje Q aq ,SU - oo ________ @ ___________________
vzdialené od seba o ¢ . Vzhladom na

sustavu S sU v pokoji, takZe v tejto ststave Loy ] Yoy
posobi medzi nimi len elektrostaticka ;¢ —
odpudiva sila. Z pohladu pohybujucej sa i X X’
sustavy S’ naboje vytvaraji magnetické ! | Q |

pole, preto sa medzi nimi pozoruje aj -¥---------------- O N —

pritazlivé magnetické pdsobenie. Vyslednd

sila F’ medzi nabojmi plsobiaca Vv tejto ststave ma preto inu velkost' ako sila F
pOsobiaca v sustave S. Presved¢ime sa, ze velkost’ impulzov je pritom rovnaka, tj. Ze
plati vztah FAt = F'At’.

RieSenie:

Sila F pbsobiaca na naboj q posudzovana z hl'adiska sustavy S je ¢isto elektrostaticka:
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Qq 1 Q

—, = F
4me, €7

F =qgE. = = —_
1By Y 4me, £2

Pri vypocte sily z hl'adiska ststavy S’ treba vyuzit transformaéné vztahy (15.4.1.2) a

(15.4.1.3) pre vektory intenzity elektrického pol'a a indukcie magnetického pola:
/ ’ Ey — vBZ I}
E, =E,, Ej,=———==p(E,—vB,), E;=pB(E,+vB,),
J1—(v/c)?
! ! v ! v
Bx=er By=ﬁ(By+C_2Ez): Bz= ﬁ(BZ_C_ZEy)

pricom E, = E, =0, B, = B,=B,=0. (Os z VpravotoCivej sistave smeruje
pred papier). Elektrostatickd (odpudiva) sila pésobiaca na ndboj g ma v slstave S’
vel'kost’

, , Qq
F; = qEy = BqE, = ﬂ4n_£0ﬁ»
Magneticka pritazliva sila posobiaca na nadboj g je vyvoland magnetickym pol'om,
ktoré vzniklo pohybom naboja Q v smere vektora v. Podl'a transforma¢ného vzt'ahu
vektor magnetickej indukcie ma velkost (podla pravidla pravej ruky ma v mieste
naboja q len zlozku v smere osi z)

, v
B; = —fEy.

Na naboj g pohybujuci sa rychlostou v potom pdsobi magneticka sila (vztah 10.1.1.1)
2
v
Fn =qvB; = —f — qEy .
Vysledna sila z pohl'adu sustavy S’ :

, v? v\ 1
F :.Bqu_ﬂc_quy:ﬂqu 1_? :Equ'

Vysledna sila je teda menSia (8 > 1), ale sucin sily a ¢asového intervalu, t.j. impulz
sily, je rovnaky, lebo ¢asovy interval posobenia sily z pohl'adu ststavy S’ je dlhsi:

1
F'At' = EquﬁAt = qE,At = FAt.

15.4.3 Invariantnost’ elektrického naboja

Invariantnost’ naboja znamena, ze sa z kazdej inercialnej sustavy javi ako
rovnako vel'ky, ¢ize vzhladom na Lorentzove transformacie je invariantny. DOkaz
invariantnosti vychadza z rovnice kontinuity, ktori upravime tak, aby v nej namiesto
vektora pradovej hustoty vystupoval stvorvektor prudovej hustoty. Rovnica kontinuity
sa Vv klasickej elektrodynamike zapisuje v tvare

dp

di — =0
IV(pu)+at ,

kde p je objemova hustota elektrického naboja (vyjadrena ako funkcia priestorovych
stradnic), u vektor rychlosti pohybujucich sa nabojov vzhladom na zvolenu
stradnicovd slstavu a t je ¢as. Ked divergenciu rozpiseme podla stradnic,
dostaneme rovnicu
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d(puy)  0d(puy) 0d(pu,)  Op
x oy tTaz ta Y

Do posledného ¢lena — do Citatel'a i do menovatel'a — doplnime vyraz ic , kde i je
imaginadrna jednotka a c¢ rychlost’ svetla, atak dostaneme vyraz, ktory pripomina
Stvorvektor. V menovateli $tvrtého ¢lena sa objavi Stvrta suradnica polohového
vektora bodovej udalosti x, = ict , pricom v ostatnych troch ¢lenoch priestorové
suradnice x; = x, atd. Rovnica kontinuity tak nadobudne tvar

d d(pu d(pu,) 0 (i
(pur)  9(puy)  0(puz) 9 (icp)
dxq dx, dx; dx,

0, (15.4.3.1)

¢o nas nabada k zavedeniu Stvorvektora pradovej hustoty, so suradnicami
Ji=puy, J2=puy Jz=pu, Ja=icp. (15.4.3.2)

Ak sa v sustave S naboje nepohybuju, vektor ich rychlosti u je nulovy a nule sa
rovnaju vsetky jeho suradnice. Preto aj tri siradnice Stvorvektora prudovej hustoty sa
rovnaju nule, zostane iba jeho Stvrta siradnica J, = i cp . Vzhl'adom na inu inercialnu
sustavu S’, sa vSak naboje pohybuju. VSetky suradnice Stvorvektora pradovej hustoty
v tejto sustave ziskame pomocou transformac¢nych vztahov (15.2.6.5) platnych pre
Stvorvektory, v ktorych v je vzajomna rychlost’ ststav. Pre prehladnost’ ich tu znova
uvedieme:

v
! . 1 ! .

1

J1— (/o2

Na ich zéklade m6Zeme napisat’ suradnice vektora prudovej hustoty v sUstave S’:

kde g =

v pv 1cp
I _ - _ = ’:O’ ’:O’ ) = —
Ji=pi . (icp) Bpv = (/o) J2 J3 Ja 1= o/ 0/0)?
(15.4..3.3)

Stvorvektor pradovej hustoty ma mat’ v Giarkovanej ststave analogicky tvar ako
v sUstave S, takze [, = icp’; potom z porovnania vztahov (15.4..3.3) a (15.4.3.2)

vyplyva,
, p

YT Ao

Z tohto vztahu vidime, ze objemova hustota elektrického naboja je najmensia v tej

(15.4.3.4)

ststave, vzhl'adom na ktort s naboje v pokoji.

Teraz vypocitame, ako sa pri tejto transformacii zmeni velkost’ naboja,
nachadzajuceho sa napr. v malom objeme dé/ = dx dy dz . Naboj pritomny v tomto
objeme ma vel'kost’

dQ = p dV.
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Po transformécii do &iarkovanej stistavy, vzhl’adom na kontrakciu dizky v smere osi x,
dostaneme naboj

dQ’' = p'dV’' = p' dx'dy’'dz’ =

m ———— /1= (v/)? dx| dydz = p dxdydz
=pdV = dQ.

To znamena, Ze velkost’ naboja sa zachovala = elektricky ndboj je invariantny, t.j.
vzhl'adom na vSetky inercidlne sustavy rovnaky.

Dalsim zo S$tvorvektorov, ktory tiez dokumentuje jednotu elektrickych
a magnetickych javov, je Stvorpotencial,.  Tri zjeho S$tyroch stradnic suvisia
s vektorovym potencidlom A(4,, A,, A, ), ktory bol zavedeny vztahom (10.2.5.5)
Vv zoSitku o magnetickom poli, $tvrta stvisi s elektrostatickym potencidlom ¢,
zavedenym podla vztahu (8.1.5.1) v zositku o elektrostatickom poli. Sdradnice
Stvorpotencialu vyzeraju takto:

A1:Ax, A2:Ay, A3:AZ’ A4_: lgD .

Vyuzitim transformac¢nych vztahov (15.2.4.6) pre Stvorvektory dostaneme:
All = :8 (Al + I’EAAI-)J AIZ = AZ ) A,3 = A3 ] A’4 = ﬁ (A1 - lEA4).
¢ c

z ktorych opat’ vidno ako sa ,,mie$a“ elektrické pole s magnetickym, ze hodnotenie
elektromagnetického pol'a zavisi od vzt'aznej sustavy, z ktorej pole posudzujeme.

Treba eSte spomentt’ silu pdsobiacu na pohybujici sa elektricky naboj
v elektromagnetickom poli. Ak v istej inercialnej vztaznej sustave je sila vyjadrena
Lorentzovym vztahom F = q(E + v X B), tak hladiska inej inerciélnej sustavy méa
tvar F' = q(E' +v' X B'), kde si treba v8§imnut, ze bez ¢iarky je len naboj, ktorého
vel'kost sa transformaciou nemeni.
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Dodatky

D1
Grafické znazornenie dvoch inercialnych saradnicovych sustav

V ¢lanku 15.2.1 vsivislosti s odvodenim Lorentzovych transformacii  je
pouzita dvojrozmerna suradnicova sustava s jednou 0sou priestorovou (0Sou x)
a jednou ¢asovou, ako je to aj na tomto obrazku. Pri

WX takomto zobrazeni sa poloha Castice na osi x v danom
‘\\ x Casovom okamihu t zobrazuje ako bod na ploche
\ o t” uréenej osami X, t , ,ktoré nech reprezentuju sustavu S.
\ -+~ Pohyb castice pozdlz osi x Vv zavislosti od Casu sa

' 0} t  zobrazi ako Ciara, pri pohybe stalou rychlostou v ako

0 ! priamka. Na obrazku je hrubSou useckou so Sipkou

znazorneny takyto pohyb z bodu O do bodu B.

Ako sa v takejto rovine da zobrazit’ sustava S’, vzh'adom na ktort je Castica
v pokoji? Takato ststava s osami x',t" , ktord sa vzhl'adom na ststavu S pohybuje
spolu s casticou rychlostou v, je znazornena c¢iarkovanymi priamkami, pri¢om
prislusné osi (t at’, resp. x ax’) zvieraju navzajom uhol o . Z pohladu sustavy S’ sa
stradnica x’ bodu nemeni, ale ¢asu pribuda, takze priebeh tohto ,,deja* sa v sUstave
S’ javi ako pohyb bodu len po ¢asovej osi sustavy. Pritom Casova os sustavy S’ je
totozna s priamkou zobrazujicou pohyb bodu v sustave S.

Uhol o sa vsustave S da vypocitat’ z geometrie obrazku pomocou funkcie
tangens a suradnic bodu B (tg, x5):

tgo = (xg/tp),
priCom zjavne xgz/tgp = v je rychlost’ Castice, a teda aj vzajomna rychlost’ sistav S a

S’. To teda znamen4, Ze stradnicové osi inercidlnej sustavy S’, ktord sa vzhl'adom na
ststavu S pohybuje rychlostou v pozdiZ osi x sa zobrazia ako pootoené o uhol, pre
ktory plati tgo = v. (Ale osi x a x” prislusnych kartezianskych sustav lezia v jednej
priamke!)

Geometricky je vypocet v poriadku, ale zatial’ o rychlost’ sa meria napriklad
v metroch za sekundu, tak funkcia tangens je bezrozmerova. Situdcia sa d4 napravit
tak, ze Casova suradnica sa vynasobi konstantou srozmerom m/s. Tak vznikne
veli¢ina s rozmerom dizky (sekunda sa vykrati), teda rovnakym ako pri osi x. Je
vyhodné za tato konStantu zvolit’ rychlost’ svetla, lebo je to univerzilna konStanta,
rovnakd vo vSetkych vztaznych sustavach. Toto sa vyuziva aj pri zavadzani tzv.
Stvorvektorov, kde k trom priestorovym suradniciam sa pridava Stvrtd — Casova
sturadnica vynasobena rychlostou svetla. Na graf moZno nanaSat’ veli¢iny v l'ubo-
vol'ne zvolenej mierke takze vel'ka rychlost’ svetla nie je na prekazku.
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D2
Transformacia zloZzky rychlosti kolmej na os x .

Ak sa Castica pohybuje len v smere kolmom na os x, napriklad v smere osi y
sustavy S, tak sa jej rychlost u’, v slstave S’ javi ako menSia v porovnani s vel-

kost'ou rychlosti u, vzhl'adom na ststavu S. Pri takomto pohybe y' =y, x, = x;:

w. = Y2—Y1 _ Y2—W1 _
Yoo, -t (tz — xz(v/cz)) _ (t1 — xl(v/cz))
J1—(2%/c?) J1—(w?%/c?)

, (y2 —y)V1— w?/c?) _ (2 —y1)V1— w?/c?) N

S R N R (& —t2)

Wy, = uy /11— (w?/c?),

= uy<uy.

D3
Poznamka k transformacii Maxwellovych rovnic

Pri transforméacii veli¢in elektromagnetického pola treba chapat’ sdradnice
vektorov E, ,E, ,E,,B,,B,, B, ako zlozené funkcie Ciarkovanych a neciarko-

vanych stradnic, ¢o zapiSeme v tvare:
f=flx'(xyz0), y(xyz0), z/(xyz1), t'(xyz0)]
Parcialnu derivaciu podl'a premennej x vyjadrime takto:

of of ox' 9f dy' Of az' of ot’

ox 9w ox Tayox Tazox Tavax @

a analogicky vyzeraju aj parcialne derivacie podl'a premennych y az. Derivacia
podla premennej t:
daf  of ox’ N af ay’ N of az' N af at’
at  odx’' ot 9dy' ot 9z’ dt  Ot' ot

(b)

Vzhladom na Lorentzove transformacie (vztahy 15.2.1.6, g = 1/4/1 — (v/c)?)

v
X =B-vd), Y=y =12 t=p(t-2x), ©
c
premenné x'at’ zavisia len od premennych x, t, pricom premenné y’ a z' od nich

nezavisia. Preto plati
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dy’ 0z' 9y’ 0z' 0

dx Ox Ot ot ’

Dalej plati
ox' ox'

B at’_ v ot
ax B e = F

o Pl
Po dosadeni do vztahov (a) a (b) tak dostaneme pre parcidlne derivacie podla x
a podla t:

of of v of
ax Pae " Pagy @

ox

of  of of

o FPorFvoe ©
D4
Comptonov jav

Ide o zmenu frekvencie prislichajucej fotonu, ku ktorej dochddza pri zrazke
s volI'nym elektréonom. Fotén odovzda elektronu Cast’ svojej energie aj Cast’ hybnosti,
akedze sa jeho rychlost nemodze zmensit, Strata energie sa prejavi zmensenim
frekvencie f, resp. zvia¢senim vinovej dizky 1. Foton sa v désledku zrazky odchyli
od p6vodného smeru o isty uhol ¢, elektron ziska kinetickl energiu a zac¢ne sa
pohybovat.

Jav sa nedd exaktne vysvetlit’ na zaklade klasickej fyziky. Energiu fotonu treba
vyjadrit’ kvantovo ako sucin hf Planckovej konstanty h a frekvencie f prislusnej viny,
a kinetickGi energiu elektronu relativistickym vztahom (m —m,)c?, kde m,je
hmotnost’ elektronu po zrazke a m, pred zrazkou (pokojova hmotnost). Vypocet je
zalozeny na aplikacii zakonov zachovania energie a hybnosti sustavy foton — elektron,
tj. energia, ani hybnost’ sustavy ako celku sa pri zrazke nezmenia.

Vychadza sa z predpokladu, Ze pred zrazkou mal elektron nulovi kineticka energiu aj
nulovd hybnost’, foton energiu hf a hybnost’
hf/c=h/A.

4

Zachovanie energie sa vyjadruje vztahom:

hf = hf' + (mc? — m,c?)

a zachovanie hybnosti (vektorovej veliiny) sa
vyjadruje dvoma rovnicami v smere priamky
prilietavajuceho fotonu a v smere nai kolmom:

h h N

7= ﬂ,cos<p muv cos @
h

0 =?sin(p—mvsina.
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Na zaklade uvedenych rovnic sa ziska zmena vinovej dizky prislachajuce;j fotonu:

A==

1- )
moc( cos @)

kde h/(myc) = 2,42 X 10~*?m je tzv. Comptonova vinova dizka. Zmena vinovej
dizky nezavisi od energie fotonu, teda od frekvencie resp. vlnovej dizky, ale len od
uhla ¢ .

Jav pozoroval a opisal A. Compton v roku 1923.
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SUHRN VZTAHOV

Lorentzove tranformécie S— S’

Lorentzove tranformacie S’ > S

kontrakcia dizok V=01 — (vZ/c?)

dilatacia ¢asu At
J1—w?%/c?)

transformacia rychlosti
Wy = uy/1— (v?/c?)

Stvorvektor polohy Xy = X, Xp =Y, X3 = Z, X4 = Ict

transformacné vztahy pre

Stvorvektory S — S’ ) v
X4 = [)’(x4 - L—xl)
c

Wy = Puy, Uy =Puy, uz = Pu,, uy = Pic
B=1/y1-(v/c)?
mO

zavislost hmotnosti od rychlosti m= = wZ/cD) = pm,

2

Stvorvektor rychlosti

Ekvivalencia hmotnosti a energie  E = mc

Kineticka energia — relativisticky

E, = mc? —m,c?
vzorec k 0
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Suvislost’ energie E a hybnosti p

Stvorvektor hybnosti

Stvorvektor sily — derivacia
hybnosti podl'a vlastného ¢asu dt

transformécie intenzity
elektrického pola

transforméacie magnetickej indukcie

Stvorvektor pradovej hustoty

transformacia hustoty elektrického
naboja

Stvorpotencial

E = \/m2c* + p2c?

P1 = MyUq, P =MuUy,

E
Py = MyU, = m,Lic = mic =i—
c

F, =dp,/dt
E b Ey—vBZ
N e OB
, E, + vB,
E,=——2>_
V1—(v/c)?
v
. 5 I By+c_2Ez
x: X’ y: )
J1—(v/c)?
B,—ZE
)
Bl = —C"

J1—(v/c)?

Ji=puy, ,=puy, Jz3=pu, Ja=icp

) P

B J1—(v/c)?

A1=Ax, A2=A

yl
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SLOVNIK

bodova udalost'— pomenovanie bodu Vv Casopriestore, reprezentujuceho
extrémne kratku udalost’ (napr. zablesk), ktora sa v danej inercialnej sustave
udiala v mieste so suradnicami x ,y,z a Vv ¢asovom okamihu ¢ .

¢asopriestor — Stvorrozmerny priestor pouzivany v teorii relativity, ktorého
tri rozmery zodpovedajii normalnemu priestoru a $tvrty rozmer ¢asu t. Bodu
V Casopriestore su priradené suradnice x; = x, X, = y, X3 =z, X, = ict,
kde i je imaginarna jednotka a c rychlost’ svetla.

dilaticia ¢asu — prediZenie ¢asového intervalu medzi dvoma udalostami
z hl'adiska pozorovatela, stvisiace s rychlostou jeho pohybu. Najkratsi
Casovy interval nameria pozorovatel viazany na takd inercidlnu sustavu,
v ktorej sa pozorované udalosti udiali na tom istom mieste.

Einsteinove postulaty — dva postulaty, na ktorych je vybudovana Specialna
teoria relativity:

— postulat o rovnocennosti vSetkych inercidlnych vztaznych ststav (ziadna
Z nich nemdéze byt uprednostnena)

— postulat o nezavislosti rychlosti svetla nameranej pozorovatelom (vo
vakuu) od jeho rychlosti vzhl'adom na zdroj svetla.

ekvivalencia hmotnosti a energie — najvyznamnejs$i vysledok Specialnej
tedrie relativity, vyjadreny vztahom E = mc?, vktorom E je celkova
energia Castice, m jej hmotnost a ¢ rychlost’ svetla. Objektu, ktory
V inercialnej siistave ma hmotnost’ m, sucasne prislucha celkova energia E.

Galileiho princip relativity, klasicky princip relativity — princip, podla
ktorého mechanickymi pokusmi uskuto¢novanymi v inercidlnej sustave, nie
je mozné zistit, ¢i sa vztazna sustava pohybuje, alebo ¢i je v pokoji.

Galileiho transformacie — transformacie polohovych suradnic medzi dvoma
inercidlnymi vztaznymi sustavami, opierajuce sa o nezavislost’ Casu od
pohybu vztaznej sustavy, tj. vyuzivajice absolutny cas. V pripade, ze
suradnicové osi sustav st vzajomne rovnobezné a vzajomny pohyb sustav sa
deje pozdiZ osi x maju tvar:

x'=x-vt,y'=1y, z'’ =z, kde v je vzajomna rychlost sustav.

interval — relativisticky invariantna veli¢ina s, zavedena vztahom
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s = (x4 —x5)° + a—yp)* + (24 —25)* - c*(ta —tp)? Vktorom
X4, Va,-- SU sUradnice jednej bodovej udalosti a xg,yg,... SO sUradnice
druhej bodovej udalosti a ¢ rychlost’ svetla. Je analogiou vzdialenosti medzi
dvoma bodmi V trojrozmernom priestore aj tym, ze transformaciou do inej
inercialnej ststavy sa jeho hodnota nemeni, tak ako sa nemeni dizka vektora
pri otoceni siradnicovej sustavy.

invariantna fyzikalna veli¢ina (invariant) — veli¢ina, ktord ma vo vSetkych
inercidlnych vztaznych ststavach rovnaku hodnotu, t.j. pri transformacii
veli¢iny do inej sustavy sa jej hodnota nemeni; takou veli¢inou je napriklad
elektricky néboj.

invariantnost’ (kovariantnost’) fyzikalneho zakona — nemennost’ formy
zéapisu zékona pri prechode do inej inercialej vzt'aznej ststavy.

kontrakcia diZzky — skratenie rozmerov objektu z hladiska pozorovatela,
zéavisiace od rychlosti, ktorou sa pohybuje vzhl'adom na pozorovany objekt.
Najvacsiu dizku nameria ten pozorovatel, vzhladom na ktorého je objekt
Vv pokoji.

Lorentzove transformécie — transformacie polohovych suradnic a cCasu,
ktoré si — na rozdiel od Galileiho transformacii — v stlade s Einsteinovymi
postulatmi. Vyplyvajiu z nich dosledky odporujuce klasickym predstavam,
ako napr. zavislost dizky a ¢asového intervalu od rychlosti pozorovatela,
alebo relativnost’ sicasnosti dvoch udalosti.

Michelsonov — Morleyov pokus — jeden z pokusov, ktorym sa mal zistit’
pohyb Zeme voci éteru. Vyuzival Michelsonov interferometer a mal overit’
predpokladant odlisnost’ ¢asovych intervalov potrebnych na prechod svetla
dvoma navzajom kolmymi ramenami interferometra — rovnobeznym so
smerom pohybu Zeme okolo Slnka a nan kolmym. Vysledok pokusu bol
negativny.

pokojovéa energia — energia Castice v tej inercialnej sustave, vzhl'adom na
ktord sa nepohybuje. S pokojovou hmotnostou m, stvisi vztahom
E, = m,c?, kde c je rychlost’ svetla.

pokojova hmotnost’, vlastna hmotnost’ (m,) — hmotnost’ Castice v tej

inercialnej sustave, vzh'adom na ktort sa nepohybuje. Castici pohybujtcej sa
rychlostou u sa prisudzuje relativistickda hmotnost’:

m=m,/\y1— (u/c)?.

relativisticka castica — Castica, ktord sa pohybuje rychlost'ou, ktord je blizka
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rychlosti svetla.

relativistickd kineticka energia — rozdiel celkovej a pokojovej energie
Castice:
E, = mc? — myc?

relativistickd mechanika — mechanika ¢astic, ktoré sa pohybuju rych-
lostami, ktoré uz nie st zanedbatel'né vzhl'adom na rychlost’ svetla.

relativisticka rychlost’ — rychlost’, ktord vzh'adom na rychlost’ svetla uz nie
je zanedbatelnd; prejavuju sa pri nej relativistické efekty, ako zvicSenie
hmotnosti Castice, dilatacia casu a pod.

relativistické  skladanie rychlosti - skladanie, ktoré vyplyva
z Lorentzovych transformaénych vztahov, podla ktorého velkost suétu
dvoch rychlosti nemoze presiahnut’ rychlost’ svetla ani v pripade, keby sa
skladali dve rychlosti blizke rychlosti svetla. Takéto skladanie rychlosti nie je
v sulade s klasickym, podl'a ktorého sa vysledna rychlost’ rovna suctu dvoch
rychlosti v; + v, .

relativnost’ sucasnosti udalosti — nezhoda pozorovatel'ov viazanych na
rozne inercialne sustavy Vv tvrdeni o stéasnosti dvoch udalosti. Udalosti,
ktoré sa odohrali v niektorej inercialnej sustave na dvoch réznych miestach
sucasne, sa z inych inerciadlnych ststav ako sucasné nejavia.

svetelny éter— hypotetické prostredie, o ktorom sa predpokladalo, Ze sa nim
Sir1 elektromagnetické vinenie. Jeho existenciu sa experimentdlne nepodarilo
dokazat’ (— Michelsonov — Morleyov pokus).

Specidlna tedria relativity — tedria tykajuca sa inercialnych vztaznych
sustav, opierajuca sa 0 dva postulaty — postulat rovnocennosti vsetkych
inercidlnych vztaznych sustav a postulat rovnakej rychlosti svetla vo
vSetkych inercidlnych ststavach. Jej najvyznamnejSim vysledkom je
ekvivalencia hmotnosti m a energie E, vyjadrena vztahom E = mc?, kde ¢
je rychlost’ svetla (vo vakuu).

Stvorpotencial — Stvorvektor, ktorého prvé tri stradnice stvisia s vek-
torovym potencialom magnetického pol'a a §tvrta sturadnica so skalarnym
potencidlom elektrostatického pola.

Stvorvektor — subor Styroch rovnakych fyzikalnych veli¢in x4, x5, X3, Xy,

(stradnic Stvorvektora v cCasopriestore), ktoré sa do inej inercidlnej
suradnicovej sustavy transformuju pomocou Lorentzovych transformacii —
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napr. Stvorvektor polohy, Stvorvektor rychlosti, Stvorvektor sily a pod.

Stvorvektor hybnosti — Stvorvektor, ktoré¢ho suradnice st vytvorené
safinom pokojovej hmotnosti pohybujiceho sa telesa s prislusnymi
suradnicami Stvorvektora rychlosti.

Stvorvektor polohy — Stvorvektor, ktorého sUradnicami su sdradnice bodovej
udalosti.

Stvorvektor rychlosti — Stvorvektor, ktorého suradnicami su derivacie
suradnic Stvorvektora polohy podl'a vlastného Casu.

vlastna dizka — di’ka predmetu urdend v inercidlnej vztfaZnej sustave,
vzhl'adom na ktort je predmet v pokoji; z l'ubovolnej inej vztaznej sustavy,
sa tento predmet javi ako kratdi; spomedzi diZok nameranych z rdznych
inercialnych sustav, je teda maximalna.

vlastny ¢as — cas, ktory ukazuji hodiny, ktoré sa vzhladom na danu
inercialnu ststavu nepohybuju, t.j. ¢as, ktory nie je importovany z inej
vzt'aznej sustavy. Pri pozorovani zo vzt'aznych sustav, ktoré sa vzh'adom na
hodiny pohybuju, sa hodiny oneskoruju v porovnani s rovnakymi hodinami
umiestnenymi v tychto sustavach.

vSeobecna tedria relativity — teoria rozSirujica rovnocennost aj na
neinercialne vztazné sustavy a postulujica lokalnu nerozliSitelnost
zrychlenia podmieného neinercialnostou vztaznej sustavy od poOsobenia
gravitatného pol'a. Podl'a v§eobecnej tedrie relativity je priestor v okoli telies
zakriveny. Predstavuje vSeobecnejSiu teoriu graviticie nez Newtonova
gravitana tedria.
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ULOHY

Odporucané hodnoty konstant:

rychlost svetla ¢ = 3 X 108m/s ,

vel’kost naboja elektrénu aj proténu e = 1,6 x 107 1%As,
hmotnost elektronu m, = 0,91 x 1073%g,

hmotnost protonu m, = 1,67 X 10~%7kg

1. Je v sulade s teoriou relativity predstava o guli, s polomerom r = 1 m, ktora sa otaca

okolo svojej osi symetrie uhlovou rychlostou @ = 3,30 x 10%rad/s ?
Vysledok: nie je, lebo jej obvodova rychlost’ by bola vicsia nez rychlost’ svetla

2. Pozorovatel’ v stistave S pripisal bodovej udalosti polohové stradnice x = 10*m,
t =2x10"%s. Aké st suradnice x’,t" tejto udalosti v sustave S’, ktora sa od S
vzd’al'uje v kladnom smere osi x rychlostou v = 0,8 ¢, ked v ¢ase t =t = 0 boli
zaciatky sUstav v jednom bode.

Vysledok: x’ = —6,33 x 10*m, ¢t = 2,89 x 107 %*s..

3. Vsustave S blikli dve ziarovky, jedna v mieste x; =0 acase t; = 0, druha

v mieste x, = 10*m acase t, =3 X 107%s. Akou rychlostou v by sa musela

pohybovat’ sustava S’, aby pozorovatel’ v nej zaznamenal bliknutia ako sucasné?
Vysledok: v = 0,09 c.

4. Castica v nasej inercialnej sustave preletela vzdialenost d = 1,5 x 108m za jednu
sekundu. Kol’ko by sme od¢itali na hodinach pohybujucich sa spolu s ¢asticou?

Vysledok: At = 0,866 s, lebo z nasho pohl'adu idu jej hodiny pomalsie, takze
ukazu menej; vzdialenost’ je z pohl'adu Castice kratsia, takze ju prejde rychlejsie.

5. Rychlost, ktorou sa v smere 0si x navzajom vzdaluju inercidlne sistavy Sa S’ je

v = 0,6 c. Pohybujuca sa castica ma v sustave S vSetky tri zlozKy rychlosti rovnaké:

Uy =uy, =u, = 0,2c. Vypocitajte velkost’ rychlosti, aki bude namerana v oboch

tychto sustavach. Treba vziat' do ivahy dve mozZnosti — a) ked’ sa Castica aj ststava S’

vzhl'adom na S pohybujud rovnakym smerom, b) ked’ sa pohybuji opaénymi smermi.
Vysledok: a) 0,535-¢c, b) 0,763-c

6. Akou rychlostou u by sa museli pohybovat hodiny, aby sa vzh'adom na naSu
inercialnu sustavu omeskali za 24 hodin o jednu sekundu?
Vysledok: u ~ 1500 km/s .

7. Castica pohybujtca sa rychlostou 0,99-c¢ prebehla v detektore od svojho vzniku
po rozpad vzdialenost’ 1 cm. Aka je doba jej Zivota vzhl'adom na detektor (At;) a aka
V sustave viazanej na Casticu (At,)?

Vysledok: At; = 3,367 x 10711s, At, = 0,475 x 107115,
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8. Tyg¢, ktora ma v sustave S’ dizku I, zviera s osou x’ uhol 30°; vzhl'adom na sustavu
S sa pohybuje rychlostou 0,8 - ¢ . Ak4 je jej dlzka [ v sUstave S ?
Vysledok: [ =0,781".

9. Elektrén preletel rychlostou 0,9 - ¢ cez vakuovu trubicu dlhG [ = 2m; kol’ko mu

to trvalo vzhl'adom na ststavu viazanu na trubicu (At;) akolko v jeho vlastnej

ststave (At,)? Aka je dizka trubice I’ z pohl'adu sustavy viazanej na elektron?
Vysledok: I’ = 0,4361 = 0,872m; At; =7,4%x 107 %, At, = 3,23 x 107 °s.

10. Hodiny sa pohybovali pozdiz osi x sustavy Srychlostou v =0,6-c aked
prelietali popri jej zaciatku (x; = 0), ukazovali t; = 0. Kolko (t,) ukazovali
v polohe x, = 10°m?

Vysledok: t, = 4,44 x 10725

11. Dve galaxie sa od naSej vzd’al'uji opa¢nymi smermi rychlostami v = 0,6 c. Aké
rychlosti nameria pozorovatel' nachadzajuci sa v jednej z nich pre rychlost’ nasej u,
a tej druhej u, galaxie?

Vysledok: u; = 0,6 ¢, u, =0,882c¢

12. Jedna z galaxii s priemerom 1000 ly (svetelnych rokov) sa od nas vzdaluje

rychlostou 0,5 c¢. Kolko bude z nasho pohladu trvat (At;), pokym svetelny 1G¢

preleti cely jej priemer, a kol'’ko z hl'adiska sustavy viazanej na galaxiu (At,)?
Vysledok: At; = 0,866 x 1000 rokov, At, = 1000 rokov

13. Vypodcitajte rychlost’ elektronu urychleného napiatim U = 10 kV podrla klasickej
(@) aj relativistickej (b) mechaniky. Po sformulovani vztahov vypocitajte v klasickom
aj relativistickom pripade limitu pre U — oo .

Vysledok: a) v =5,9 x 10’m/s =0,197-c b) v=10,195-c¢
Pre U — oo podla klasického vypoctu limitnd hodnota rychlosti rastie nad vSetky
medze, podla relativistického vypoctu sa rovna rychlosti svetla.

14. Vypocitajte rychlost’ elektréonu urychleného napiatim U = 1MV, a to podla
Klasickej (a) aj relativistickej (b) mechaniky.
Vysledok: a) v =5,9 x 108m/s =1,97:-¢c > c!!  b)v=0916-c

15. Akym napétim U by sa podrla klasickej fyziky urychlil elektron na rychlost’ svetla? Aka
rychlost’ u nadobudne pri takomto urychl'ujicom napéti v skuto¢nosti?
Vysledok: U = 2,56 x 105V, u = 0,745

16. Kolkokrat sa zva¢si pozorovand hmotnost’ elektronu urychleného napétim
a) 10 kV, b) 1MV ? Vyuzite hodnoty rychlosti z Uloh 1a a 1b.
Vysledok: a) 1,012 —krat, b) 2,49 - kréat

17. Vypocitajte rychlost u protonu, ktory v urychlovaci ziskal kineticki energiu

velkosti 1 MeV. Pocitajte podl'a klasickej (a) aj relativistickej (b) mechaniky.
Vysledok:a) u = 0,046-c, b) u = 0,0046-c
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18. Akou rychlostou u sa musi pohybovat’ Castica, aby sme namerali jej hmotnost
ako dvojnasobn(?

Vysledok: u = c-v3/2=0,866"c

19. Vyjadrite v kilowatthodinach ekvivalent energie jedného gramu hmoty !
Vysledok: E = 9 x 1013Ws = 2,5 x 10’kWh

20. Aka je velkost rychlosti Castice v inercialnej sustave, vzhladom na ktora ma
hmotnost m = 0,911 x 10739 kg a hybnost p = 1,58 X 10722 kg -m/s ?
Vysledok: u = 1,52 x 108m/s.

21. Pri akej rychlosti u sa velkost’ kinetickej energie Castice rovna jej pokojovej
hmotnosti vynasobenej druhou mocninou rychlosti svetla?

Vysledok: u = ¢ -+/3/2 = 0,866 - ¢

22. Na urychlenie ¢astice s pokojovou hmotnostou m, = 0,91 x 1073%%kg dodame
pracu W, ktorej vel'kost’ sa rovna jej pokojovej energii m,c?. Akl bude mat kineticka
energiu E}, a aka bude jej rychlost’ u ?

Vysledok: E, = 8,19 x 10~ Ws, u =0,866"c

23. Aku velka pracu treba vykonat’ na urychlenie elektrénu z pokoja na rychlosti
0,5¢, 09ca 0,999c?
Vysledok: m,c? - 0,15, myc?-1,29, m,c?-21,4 ; m,c?> =8,19 x 10" 1*Ws

24. Porovnajte, akl vel'kl pracu A treba dodat’ na urychlenie elektréonu a) z0,1 ¢ na 0,2 ¢
b) z0,8cna09c?
VYSIEdOK WO,Z - WO,l - 0,015 mOCZ, W0,9 - W0,8 == 0,613 mOCZ

25. Kvazary (jadra aktivnych galaxii na zacCiatku ich vyvoja) vyZaruju energiu
vykonom cca P = 10**W . Kol'ko hmotnosti ubudne z kvazaru za jednu sekundu?
Vysledok: Am/At = 10%*kg/s
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