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15 
 

TEÓRIA  RELATIVITY 
_________________________________ 
 

Autorom teórie relativity bol Albert Einstein. Špeciálna teória relativity, ktorú 

publikoval v roku 1905, priniesla podstatnú zmenu v chápaní  času a  priestoru, 

znamenala koniec predstáv o ich absolútnosti. Ukázala, že dĺžky aj časové intervaly 

závisia od toho, z ktorej vzťažnej sústavy ich pozorujeme. Vyplynulo z nej, že 

hmotnosť a energia navzájom súvisia, že ak sa zmení energia častice, či fyzikálnej 

sústavy, zmení sa aj jej hmotnosť. Jej piliermi sú postuláty o rovnocennosti všetkých 

inerciálnych sústav a  nezávislosť rýchlosti svetla od pohybu zdroja či pozorovateľa. 

Rozhodujúcim podnetom na jej vznik bol nesúlad Maxwellových rovníc s Galileiho 

transformáciami, ale prispeli aj pokusy, poukazujúce na neexistenciu éteru.  

O desať rokov neskôr Einstein publikoval všeobecnú teóriu relativity, v ktorej 

postuloval rovnocennosť všetkých vzťažných sústav, vrátane neinerciálnych,  Jej 

významnou súčasťou  je tvrdenie o lokálnej nerozlíšiteľnosti  zrýchleného pohybu a 

gravitačného pôsobenia (napr. pozorovateľ v uzavretej kabíne výťahu ich nedokáže 

rozlíšiť). Z teórie vyplynulo, že  geometria priestoru i plynutie času závisia od rozlo-

ženia hmoty v priestore, že prítomnosť hmoty zakrivuje priestor, ako aj svetelné lúče.  

Jej predpovede – napríklad existencia gravitačných vĺn, či gravitačných šošoviek, boli 

neskôr potvrdené. Všeobecná teória relativity však nebude predmetom tejto kapitoly..   

Špeciálna teória relativity sa zaoberá javmi, ktoré sa pri mechanických dejoch 

dajú pozorovať až pri tzv. relativistických rýchlostiach, čo sú rýchlosti porovnateľné s  

rýchlosťou svetla. Klasická mechanika založená na Newtonových zákonoch pri 

takýchto rýchlostiach už neposkytuje korektné výsledky. Rýchlosti takejto veľkosti 

nadobúdajú napríklad elektróny urýchlené napätím desiatok kilovoltov, čo sa týka už 

aj elektrónov v obrazovkách starších televízorov. Elektromagnetické javy sú však so  

špeciálnou teóriou relativity v úplnej zhode. Vyplýva z nej, že magnetické a  elektrické 

polia sú iba dvoma stránkami jedinej reality.  Súlad s teóriou relativity sa prejavuje aj 

pri Maxwellových rovniciach, ktoré si pri  transformáciách medzi inerciálnymi sústa-

vami, zachovávajú svoj tvar.  

V prvej podkapitole sú opísané experimenty, ktoré poukázali na neexistenciu 

éteru a nezávislosť rýchlosti svetla od vzájomného pohybu zdroja a pozorovateľa. 

Tento výsledok uviedol Einstein ako jeden z  postulátov špeciálnej teórie relativity. 

Druhá podkapitola sa zaoberá Lorentzovými transformáciami a ich dôsledkami na 

mechanické javy, akými sú kontrakcia dĺžky a dilatácia času. Odvodený je aj 

transformačný vzťah pre rýchlosť objektov pozorovaných z rôznych inerciálnych 

sústav, odlišný od vzťahu klasickej mechaniky. Tretia podkapitola je zameraná na 

hmotnosť, energiu a hybnosť objektov. Zdôvodňuje, prečo sa s rýchlosťou telesa 

zväčšuje aj jeho hmotnosť. Štvrtá podkapitola je venovaná elektromagnetickým javom, 

transformáciám príslušných veličín, ako aj invariantnosti elektrického náboja častíc, 

ktorý  na rozdiel od ich hmotnosti sa s rýchlosťou  nemení. 
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15.1  Pokusy dokazujúce neexistenciu éteru  
 

 

V poslednej tretine XIX. storočia, po Maxwellovej predpovedi (1865) a  

Hertzovom experimentálnom dôkaze existencie elektromagnetického vlnenia (1888), 

začalo sa uvažovať o prostredí, ktorým sa toto vlnenie šíri  (akým je napr. vzduch pri 

šírení zvuku). Predpokladané prostredie dostalo názov  éter, ale problémy boli 

s experimentálnym dôkazom jeho existencie. Predpokladalo sa, že éter vypĺňa celý 

vesmírny priestor, že je nehybný a že planéty a hviezdy sa v ňom pohybujú. Pohyb 

vzhľadom na éter – ak by sa ho podarilo zistiť – by bol absolútnym pohybom, v súlade 

s Newtonovými predstavami o absolútnom priestore a čase. Z viacerých pokusov, 

ktoré mali tento absolútny pohyb zistiť, si pozornosť zaslúži najmä pokus 

Michelsonov, a z neskoršieho obdobia pokus s atómovými hodinami.  

 

 

 

15.1.1   Michelsonov - Morleyov pokus  
 

Pokus vychádzal z predpokladu, že éter zapĺňa celý Vesmír a že svetlo sa 

vzhľadom na éter pohybuje vo všetkých smeroch vždy rovnakou rýchlosťou, podobne 

ako vlny po hladine pokojného jazera. Pohyb Zeme okolo Slnka sa vtedy dá 

interpretovať ako pohyb vzhľadom na éter, pravda za predpokladu, že Slnko sa 

vzhľadom na éter nepohybuje. To by znamenalo, že rýchlosť svetla vzhľadom na Zem 

by závisela od veľkosti a smeru jej rýchlosti. V lete by sme namerali inú rýchlosť  

 

svetla prichádzajúceho napríklad od hviezdy Regulus (leží v rovine ekliptiky), ako 

v zime. Keď sa Zem pohybuje v ústrety prichádzajúcemu svetelnému lúču, mali by 

sme mu namerať vyššiu rýchlosť, ako v prípade pohybu Zeme opačným smerom. 

A ešte inakšiu veľkosť rýchlosti by sme namerali, keby sa svetelný lúč pohyboval 

kolmo na smer pohybu Zeme.  

V roku 1887 A. Michelson navrhol a  skonštruoval optické zariadenie – 

interferometer – ktorý neskôr spolu s  E. Morleyom zdokonalili a pokúsili sa porovnať 

rýchlosť svetla  c rýchlosti Zeme  v 

rýchlosť svetla vzhľadom na 

Zem – v lete a v zime 

c -  v 

c +  v 
Obr. 15.1.1.1 



 6 

rýchlosti dvoch svetelných lúčov, pohybujúcich sa v  navzájom kolmých smeroch. 

Preto ich interferometer mal dve na seba kolmé ramená (obr.15.1.1.2).  

Úzky svetelný lúč vychádzajúci zo 

zdroja dopadá na polopriepustné 

zrkadlo P, kde sa delí na dve približne 

rovnako intenzívne časti. Jedna časť 

pokračuje priamo k zrkadlu A, odrazená 

k zrkadlu B, na nich sa lúče odrazia 

a vracajú k polopriepustnému zrkadlu P. 

Tam sa opäť každý z lúčov rozdvojí – 

časť sa vracia smerom k zdroju, časť 

smeruje k detektoru, zvyčajne ďaleko-

hľadu, ktorým bola sledovaná interfe-

rencia lúčov. Výsledok interferencie závisí od rozdielu dĺžok, ktorými musia dva lúče 

prejsť. Tento rozdiel závisí od dĺžok ramien interferometra – od vzdialeností zrkadiel 

A resp. B od polopriepustného zrkadla P. Predpokladajme, že ramená majú rovnakú 

dĺžku   .   

Keby sa Zem vzhľadom na éter nepohybovala, svetlo by na prelet od zrkadla P 

k zrkadlám  A, resp. B a nazad, potrebovalo časový interval  ∆𝑡𝑜 = 2/𝑐 . Keď sa však 

pohybuje, tak tieto časové intervaly by sa mali zmeniť. Pri ramene rovnobežnom 

s vektorom rýchlosti Zeme je rýchlosť svetla v jednom smere 𝑐 + 𝑣, v opačnom smere  

𝑐 – 𝑣. Pre časový interval  ∆𝑡  potrebný na prelet ramena tam a späť tak dostaneme 
 

∆𝑡 =
2

𝑐 – 𝑣
+

2

𝑐 + 𝑣
= 2

c

c2 − v2
=
2

c

1

1 − (v2 c2⁄ )
 .     (15.1.1.1) 

 

 

Svetelný lúč letiaci v „kolmom“ smere sa 

musí pohybovať mierne šikmo, lebo 

pokým od zrkadla  P  prejde k zrkadlu B, 

toto sa rýchlosťou  𝑣  o kúsok posunie. 

Dvakrát musí preletieť dráhu 1 , pokým sa 

vráti k zrkadlu  P, na čo potrebuje časový 

interval  ∆𝑡 . Na základe obrázku 15.1.1.3 

platia vzťahy  

 

(1)
2 = 2 + (𝑣

∆𝑡

2
)
2

  a    1 = 𝑐
∆𝑡

2
 ,     čiže     

𝑐2

4
(∆𝑡)

2 = 2 +
𝑣2

4
(∆𝑡)

2 , 
 

odkiaľ úpravou získame  

(𝑐2 − v2)(∆𝑡)
2 = 42            (∆𝑡)

2 =
42

(𝑐2 − 𝑣2)
 ,    

a konečný vzťah:  

zdroj P 

B 

Obr.15.1.1.3 

 

P‘ 

1 

 

zdroj 

P 

B 

A 

detektor Obr.15.1.1.2 
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∆𝑡 =
2

𝑐

1

√1 −
𝑣2

𝑐2

 .                                          (15.1.1.2) 

 

Za predpokladu, že Zem sa vzhľadom na éter pohybuje rýchlosťou  𝑣 a že svetlo sa 

vzhľadom na éter pohybuje stálou rýchlosťou  𝑐,  svetlo na prelet cez navzájom kolmé 

ramená interfereometra potrebuje rôzne časové intervaly. Pre ich rozdiel by platilo:  
 

∆t = ∆𝑡 − ∆𝑡 =
2

𝑐
 

(

 
1

1 −
𝑣2

𝑐2

−
1

√1−
𝑣2

𝑐2)

 ≅
2

𝑐
[(1 +

𝑣2

𝑐2
) − (1 +

1

2

𝑣2

𝑐2
)] =



𝑐

𝑣2

𝑐2
 

    (15.1.1.3) 
 

Pri dĺžke ramien interferometra  = 10 m,  rýchlosti svetla  𝑐 =  3 × 108 m/s        

a rýchlosti Zeme    𝑣 = 3 × 104 m/s,  pre rozdiel časových intervalov dostaneme údaj  
 

𝑡 =  (1/3) × 10–15s . 
 

Za tento krátky časový interval svetlo preletí vzdialenosť  𝑐 𝑡 = 10–7m , čo je jedna 

pätina vlnovej dĺžky zeleného svetla. To znamená, že v pozorovacom ďalekohľade by 

sme mali vnímať interferenciu dvoch svetelných vĺn, ktoré sú dráhovo posunuté 

o tento zlomok vlnovej dĺžky. Po šiestich hodinách si v dôsledku rotácie Zeme ramená 

vymenia úlohy (pôvodne rovnobežné rameno bude teraz kolmé na smer pohybu 

Zeme), takže v ďalekohľade by sme mali sledovať postupné zmeny interferenčného 

obrazu. Napriek očakávaniu sa interferenčný obraz pri Michelsonovom a  

Morleyovom experimente vôbec nemenil, ani počas dňa, ani v priebehu roka.  

Záporný výsledok experimentu sa dá vysvetliť napríklad tak, že éter sa 

pohybuje spolu so Zemou, alebo, že rýchlosť svetla je vo všetkých smeroch rovnaká, 

neovplyvnená pohybom Zeme. Pohyb éteru spolu so Zemou (hovorilo sa o dokonalom 

strhávaní éteru Zemou) je však nepravdepodobný, lebo to isté by sa dialo aj v prípade 

iných planét, alebo dokonca pohybujúcich telies. Preto je nezávislosť rýchlosti svetla 

od pohybu zdroja či pozorovateľa tým správnym záverom vyplývajúcim z výsledku  

Michelsnonovho a Morleyovho experimentu.  

 

 

 

  15.1.2   Pokus s atómovými hodinami 
 

Ide o experiment uskutočnený mnoho rokov po vzniku teórie relativity. V čase 

jej vzniku ešte neboli k dispozícií také presné metódy merania času, aké poskytujú 

atómové hodiny. Tento experiment má jednoduchú analógiu v šírení zvuku vzduchom, 

alebo vĺn po pokojnej hladine jazera. Keď sa zdroj zvuku a pozorovateľ  vzhľadom na 

vzduch nepohybujú, a medzi nimi je vzdialenosť  , vyslaný zvukový signál doletí 

k pozorovateľovi za časový interval 𝑡 = /𝑐, kde  𝑐  je rýchlosť zvuku vo vzduchu. 

Ak sa zdroj aj pozorovateľ pohybujú rovnakou rýchlosťou  𝑣  v smere šírenia zvuku, 
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potom pozorovateľ pred zvukovým signálom uteká, takže signál musí prekonať väčšiu 

vzdialenosť než   , pokým príde až k pozorovateľovi. To znamená, že mu to trvá 

dlhšie. Ak sa zdroj aj pozorovateľ pohybujú opačným smerom,  potom zvukový signál 

príde k pozorovateľovi za kratší časový interval.  

Podobná situácia by nastala, keby sme sledovali šírenie elektromagnetickej vlny 

medzi vysielačom a prijímačom, umiestnenými na povrchu Zeme (napr. na rovníku). 

Pravda, za predpokladu, že elektromagnetické vlny sa šíria nehybným éterom. 

Predpokladajme že Zem sa vzhľadom na éter pohybuje rýchlosťou  𝑣 . Ak by sa vlna 

od vysielača k prijímaču o polnoci šírila súhlasne so smerom pohybu Zeme, trvalo by 

jej to dlhšie ako na poludnie (obr. 15.1.2.1). Prijímač by vtedy pred vlnou vyslanou 

vysielačom unikal, na rozdiel od poludnia, kedy by jej šiel v ústrety. Rozdiel medzi 

časovými intervalmi, ktoré by vlna potrebovala na poludnie a v noci dokážeme 

vypočítať a v súčasnej dobe by sa pomocou atómových hodín dali aj zmerať.  

 

 

Najprv vypočítame príslušné časové intervaly. Nech sa elektromagnetická vlna 

pohybuje vzhľadom na éter rýchlosťou  𝑐, a Zem vzhľadom na éter rýchlosťou  𝑣. 

Vzdialenosť medzi vysielačom a prijímačom nech je  𝑑 .  Ak prijímač pred vlnou 

uteká, vlna potrebuje na prelet časový interval  𝑡𝑑𝑒ň , keď ide vlne  oproti, časový 

interval   𝑡𝑛𝑜𝑐  , pre ktoré platia vzťahy:  
 

𝑡deň =
𝑑

𝑐 − 𝑣
 ,       𝑡noc = 

𝑑

𝑐 + 𝑣
                        (15.1.2.1)    

 

Pre rozdiel týchto časových intervalov dostaneme: 
 

𝑡 =
𝑑

𝑐 − 𝑣
−

𝑑

𝑐 + 𝑣
=

2𝑑𝑣

𝑐2 − 𝑣2
 .                           (15.1.2.2) 

  

Keď dosadíme hodnoty  𝑑 = 100 km,  𝑐 = 3 × 108 m/s,  𝑣 = 3 × 104 m/s, pre rozdiel 

časových intervalov dostaneme približne 𝑡 =  3 × 10–8s , čo je v súčasnosti 

pohodlne merateľná hodnota. Veď sekunda sa v súčasnosti reprodukuje s relatívnou 

neurčitosťou 1 × 10–13s .  Experimenty ukázali, že časové intervaly 𝑡noc a  𝑡deň  

boli s vysokou presnosťou namerané ako rovnaké.  

prijímač vysielač 

poludnie 

polnoc 

Obr. 15.1.1.2 

v 
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 Experiment s  atómovými hodinami s  oveľa vyššou presnosťou potvrdil 

výsledok Michelsonovho – Morleyovho pokusu.  Nie je teda možné zistiť pohyb Zeme 

vzhľadom na éter, resp. nameraná rýchlosť svetla nezávisí od pohybu pozorovateľa 

vzhľadom na zdroj.   
  

 Spomenieme ešte pokus, ktorý vykonali F. Trouton a H. Noble v rokoch 1902 

až 1903. Pokúšali sa určiť moment sily pôsobiaci na dvojicu nábojov s opačnými 

znamienkami (ako dipól), ktoré pri pohybe vzhľadom na éter mali na seba pôsobiť 

nielen elektrostaticky, ale aj magneticky. Pritom mal vzniknúť moment sily, zabezpe-

čujúci rozdielne polohy dipólu vo dne a v noci. Pokus realizovali pomocou nabitého 

kondenzátora zaveseného  na jemnom vlákne, aj ten však viedol k rovnakému 

výsledku, ako dva už spomenuté pokusy.  

 

 

  15.1.3   Einsteinove postuláty 
 

Pokusy snažiace sa objaviť éter ukázali, že nech sa akokoľvek pohybujeme, 

rýchlosť svetla, ktorú nameriame, je vždy rovnaká (rozumie sa rýchlosť vo vákuu). 

Ako keby sme sa vzhľadom na éter nepohybovali, resp. ako keby hypotetický éter bol 

úplne strhávaný pohybom Zeme. Ale planéty, aj rôzne telesá na Zemi, sa pohybujú 

rôznymi rýchlosťami, takže absolútne strhávanie éteru len našou Zemou je 

nepravdepodobné. Preto môžeme konštatovať, že nejestvuje absolútne stojace 

médium, ktorým sa šíria elektromagnetické vlny.  
 

Berúc do úvahy výsledky experimentov  Einstein sformuloval dva postuláty: 
 

I. Všetky inerciálne vzťažné sústavy sú pre opis fyzikálnych dejov 

rovnocenné, žiadna z nich nemôže byť považovaná za preferovanú 

(absolútnu).  
 

II. Rýchlosť svetla (vo vákuu) nezávisí od pohybu, ani voľby vzťažnej 

sústavy, vzhľadom na ktorú sa meria. Vo všetkých vzťažných 

sústavách je rovnaká.  
 

Prvý postulát sa označuje aj ako špeciálny princíp relativity (niekedy aj ako 

Einsteinov). Môže sa doplniť formuláciou, že fyzikálne zákony (nielen pre 

mechanické, ale aj pre ostatné javy) musia mať rovnaký tvar vo všetkých inerciálnych 

vzťažných sústavách.  

Einsteinove postuláty vyplynuli z  logického posúdenia experimentov. 

Vyjadrujú prekvapujúcu skutočnosť, že keby sme sa akokoľvek rýchlo pohybovali 

v ústrety svetelnému lúču, vždy by sme mu namerali rovnakú rýchlosť. To je v rozpore 

s bežným princípom skladania rýchlostí, podľa ktorého sa rýchlosti sčítavajú lineárne. 

Rýchlosť cestujúceho pohybujúceho sa v električke, sa vzhľadom na koľajnice rovná 

súčtu rýchlosti električky a  rýchlosti cestujúceho vzhľadom na električku. Takéto 

klasické skladanie rýchlosti opisujú Galileiho transformačné vzťahy medzi 
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súradnicami dvoch vzťažných sústav, ktoré sa navzájom pohybujú. Ich platnosť sme 

doteraz intuitívne predpokladali, je však vhodné uviesť ich matematickú formu.  

  

Na obrázku sú znázornené dve súradnicové sústavy S  a  S’, ktoré majú rovnobežné 

súradnicové osi, pričom sústava S’ sa vzhľadom na sústavu S pohybuje rýchlosťou  𝑣 

v kladnom smere osi 𝑥 . Predpokladajme, že bod  P  sa v sústave S nepohybuje, a má 

súradnice  P (x, y). Jeho súradnica  𝑦’ je rovnaká ako súradnica 𝑦  (𝑦’ = 𝑦) , čo 

môžeme napísať aj pre tretiu súradnicu: 𝑧’ = 𝑧 . Ale súradnica  𝑥’  sa v sústave   S’ 

s časom mení podľa vzťahu 

𝑥’ = 𝑥 – 𝑣𝑡. 
 

Tieto vzťahy spolu tvoria špeciálny prípad Galileiho transfomácií:  
 

𝑥’ = 𝑥 – 𝑣𝑡,    𝑦’ = 𝑦 ,      𝑧’ = 𝑧 .                            (15.1.3.1)                            
 

Ak by sa bod P pohyboval rovnobežne s osou  𝑥  rýchlosťou  𝑢, jeho rýchlosť  

𝑢’ vzhľadom na sústavu  S’, vypočítame deriváciou transformačného vzťahu medzi 

súradnicami  𝑥 a 𝑥’: 

𝑢’ =
d𝑥’

d𝑡
=
d

d𝑡
(𝑥 – 𝑣𝑡) =

d𝑥

d𝑡
− 𝑣 = 𝑢 − 𝑣 ,                 (15.1.3.2)  

                      

čo je Galileiho transformačný vzťah pre rýchlosť. Podľa tohto vzťahu by pozorovaná 

rýchlosť svetla závisela od rýchlosti pohybu pozorovateľa. Tento vzťah bol intuitívne 

použitý pri posudzovaní Michelsonovho – Morleyovho pokusu, aj pokusu s atómo-

vými hodinami. Ako ukázali tieto experimenty, viedlo to k nesprávnemu odhadu 

výsledkov. Správne výsledky však poskytujú transformácie, ktoré sformuloval H. A. 

Lorentz  v snahe nájsť transformácie, ktoré zachovávajú tvar Maxwellových rovníc. Sú 

odvodené v nasledujúcej časti tohto textu.  

 K výpočtu rýchlosti v čiarkovanej sústave treba ešte dodať významnú 

poznámku – predpokladali sme, že čas v obidvoch sústavách plynie rovnako, teda že aj 

časové intervaly d𝑡’ a  d𝑡 sú rovnaké. Takýto predpoklad je v súlade s Newtonovou 

predstavou absolútneho priestoru a času. Ten však z hľadiska teórie relativity nie je 

správny.  

 Treba ďalej uviesť, že Newtonova rovnica  𝐹 = 𝑚𝑎 nemení svoj tvar pri 

transfomácii do inej inerciálnej sústavy, ak sa použijú Galileiho transformačné vzťahy. 

Keďže vzájomná rýchlosť 𝑣 dvoch inerciálnych sústav sa s časom nemení, deriváciou  

x‘ 

x 

P 

v 

y‘ y 

S 

S’ 

 

Obr. 15.1.3.1 
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vzťahu (15.1.3.2) podľa času zistíme, že zrýchlenie (častice, telesa) je v obidvoch 

sústavách rovnaké:   

𝑎’ =
d𝑢’

d𝑡
=
d𝑢

d𝑡
+ 0 = 𝑎 .                                 (15.1.3.3) 

 

A teda aj sily sú v týchto sústavách rovnaké (𝐹 = 𝐹′ = 𝑚𝑎), lebo hmotnosť 𝑚 sa 

podľa klasickej fyziky s narastajúcou rýchlosťou nemení. Preto sú pohybové zákony 

týkajúce sa mechanických dejov vo všetkých takýchto vzťažných sústavách rovnaké. 

Táto skutočnosť sa označuje ako mechanický, alebo Galileiho princíp relativity.  

Inak je to pri  Maxwellových rovniciach opisujúcich elektromagnetické deje, 

vrátane šírenia svetla – tie nie sú v súlade s Galileiho transformáciami. V súlade sú 

však s Lorentzovými transformačnými vzťahmi, voči ktorým naopak, nie sú inva-

riantné Newtonove pohybové rovnice. Lorentzovým transformáciám je venovaná 

nasledujúca podkapitola.     

 

Kontrolné otázky 
 

1. Čo bolo cieľom Michelsonovho pokusu a aký bol jeho výsledok? 

2. Ktorý pohyb Zeme vzhľadom na éter mohol mať väčší vplyv – denný či ročný? 

3. V čom je nesúlad výsledkov Michelsonovho pokusu s Galileiho transformáciami? 

4. Ako Einstein vyriešil negatívny výsledok Michelsonovho pokusu? 

5. Sformulujte vlastnými slovami prvý aj druhý Einsteinov postulát.  

6. Čo hovorí špeciálny princíp relativity,  čím sa líši od mechanického princípu?  

7. Ktorá časť fyziky je v súlade s Galileiho transformáciami? 

8. Môže sa súradnicová sústava viazaná na zemský povrch považovať za inerciálnu? 
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15.2  Lorentzove transformácie a ich dôsledky 

 

Experimenty vykonané ešte koncom 19. storočia ukázali, že Galileiho 

transformácie vedú k nesprávnym predpovediam, keď ide o elektromagnetické javy. 

Preto sa hľadali iné transformačné vzťahy, ktoré by ich korektne opisovali. V tejto 

podkapitole sú odvodené Lorentzove transformácie a posúdené dôsledky, ktoré z nich 

vyplývajú.  

 

 

15.2.1   Odvodenie Lorentzových transformácií 

 

Lorentzove transformácie sa od Galileiho líšia tým, že pri prechode do inej 

inerciálnej sústavy sa menia nielen priestorové súradnice objektov, ale aj časové údaje 

udalostí. Časový údaj konkrétnej udalosti nameraný v jednej sústave, sa nemusí 

zhodovať s údajmi nameranými v iných sústavách. Treba však hneď uviesť, že 

z rovnocennosti inerciálnych sústav vyplýva (prvý Einsteinov postulát), že vo 

všetkých inerciálnych sústavách plynie ich tzv. vlastný čas rovnako.  Etalóny sekundy 

aj metra sú vo všetkých inerciálnych sústavách rovnaké,  len ich veľkosti sa inak javia 

zo  sústav, vzhľadom na ktoré sa tieto etalóny pohybujú. Transformujú (menia) sa 

údaje o  polohe a časovom okamihu „bodovej udalosti“ pri prechode do inej iner-

ciálnej sústavy.  

 

Zmena polohových súradníc je súčasťou aj Galileiho transformačných vzťahov, 

zmena časovej „súradnice“, je však špecialitou Lorentzových transformácií. Tieto 

transformácie dokážeme odvodiť na základe analógie s dvoma navzájom pootočenými 

ortogonálnymi karteziánskymi sústavami so spoločným začiatkom (obr. 15.2.1.1). Bod  

P  má v sústave S súradnice  (𝑥, 𝑦),  v sústave  S’ súradnice  (𝑥’, 𝑦‘), pričom medzi 

súradnicami platia lineárne transformačné vzťahy 
 

𝑥’ = 𝑎11𝑥 + 𝑎12𝑦 ,    𝑦’ = 𝑎21𝑥 + 𝑎22𝑦,       

resp. 

𝑥 = 𝑎’11𝑥’ + 𝑎’12 𝑦’ ,   y = 𝑎’11𝑥’ + 𝑎’12 𝑦’  

                (15.2.1.1) 

 
P 

x‘ 

y‘ 

x 

y 

Obr. 15.2.1.1 

 

B 
 t‘ 

t 

x x‘ 

Obr. 15.2.1.2 
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Ak jednu z priestorových súradnicových osí nahradíme časovou osou, zistíme, že 

vlastne ide o znázornenie dvoch inerciálnych sústav, ktoré sa navzájom pohybujú, 

pričom uhol  pootočenia    súvisí s  ich vzájomnou rýchlosťou 𝑣  prostredníctvom 

vzťahu  tg  = 𝑣 ( dodatok D1). Predstavme si dve inerciálne sústavy, s osami  𝑥  a  

𝑥’ ležiacimi v jednej priamke (ako na obrázku 15.1.3.1 v predchádzajúcom článku). 

Nech v čase 𝑡1 = 𝑡′1 = 0 sú  ich začiatky totožné a nech odtiaľ (t.j. z polohy  𝑥1 =

𝑥′1 = 0)  v tomto okamihu  vyštartuje v smere osi  𝑥 pretekár.  Ten v čase  𝑡2 dobehne 

do bodu B, ktorý má súradnicu  𝑥2 . Jeho rýchlosť v sústave  S  vypočítame ako podiel  

𝑢 = (𝑥2 – 𝑥1)/(𝑡2 – 𝑡1), ale v  sústave  S’, ktorá sa vzhľadom na sústavu  S  pohybuje 

rýchlosťou  𝑣, sa jeho rýchlosť vypočíta podľa vzťahu  𝑢’ = (𝑥’2 – 𝑥‘1)/(𝑡’2 –  𝑡‘1),  čo 

aj podľa obrázku 15.2.1.2 poskytuje inú hodnotu.   

V analógii so vzťahmi (15.2.1.1) napíšeme transformačné vzťahy vychádzajúce 

z obr. 15.2.1.2, ale súradnicu  𝑦  nahradíme časovou súradnicou, (pri  trojrozmernom 

priestore považujeme časovú súradnicu za štvrtú, preto pri nej používame index  „4“): 
 

𝑥’ = 𝑎11𝑥 + 𝑎14𝑡 ,        𝑡’ = 𝑎41𝑥 + 𝑎44𝑡,                 (15.2.1.2) 
 

a spätné transformácie 
 

𝑥 = 𝑎’11𝑥’ + 𝑎’14 𝑡’ ,     𝑡 = 𝑎’41𝑥’ + 𝑎’44 𝑡’              (15.2.1.3) 
 

Treba určiť koeficienty  𝑎𝑖𝑗   a   𝑎’𝑖𝑗 vystupujúce v týchto vzťahoch. Predpokladali sme, 

že na začiatku, teda v čase  𝑡 = 𝑡’ = 0 sú začiatky sústav spoločné. Začiatok  O’ v 

sústave S’ má zrejme trvale súradnicu   x’ = 0. Od začiatku  O  sústavy  S  sa však 

vzďaľuje rýchlosťou  𝑣 (pozdĺž osi  𝑥),  preto  sa jeho 𝑥 –ová  súradnica  mení s časom 

podľa  vzťahu  𝑥 = 𝑣𝑡 . Po dosadení do prvého zo vzťahov (15.2.1.2) dostaneme: 
 

𝑥’ = 𝑎11𝑥 + 𝑎14𝑡            0 = 𝑎11𝑣𝑡 + 𝑎14𝑡       𝑎14 = −𝑎11𝑣 ,  
 

takže vzťah nadobudne tvar 

𝑥’ = 𝑎11(𝑥 − 𝑣𝑡) .                                                     (∗) 
 

Podobne, pre bod  O platí  𝑥 = 0, 𝑥’ = −𝑣𝑡’ , odkiaľ získame vzťah  
 

𝑥 = 𝑎’11(𝑥’ + 𝑣𝑡’).                                                   (∗∗) 
 

 Pri ďalšej úprave využijeme najprv prvý Einsteinov postulát, podľa ktorého sú 

obidve sústavy rovnocenné, z čoho vyplýva, že koeficienty  𝑎11 a  𝑎’11  nemôžu byť 

rôzne, t.j.   𝑎11 =   𝑎’11 .   V nasledujúcom kroku využijeme druhý postulát, t.j. 

rovnakú rýchlosť svetla v obidvoch sústavách. Pritom urobíme myslený pokus so 

šírením svetla  v týchto sústavách – v okamihu, keď sú ich začiatky spolu, blikne tam 

zdroj svetla. Svetelný signál sa v obidvoch sústavách šíri rovnakou rýchlosťou, teda aj 

pozdĺž osi  𝑥 , aj pozdĺž  osi  𝑥’. To znamená, že v istom okamihu  𝑡’, ktorému 

v sústave  S zodpovedá časový údaj  t,  svetelný signál v sústave  S’ dosiahne bod   

𝑥’ = 𝑐 𝑡’  a v sústave  S  bod  𝑥 = 𝑐𝑡. Tieto údaje dosadíme do vzťahov  (*) a  (**): 
 

𝑐𝑡’ = 𝑎11(𝑐𝑡 − 𝑣𝑡) = 𝑎11𝑡(𝑐 − 𝑣),              𝑐𝑡 = 𝑎11(𝑐𝑡’ + 𝑣𝑡’) = 𝑎11𝑡’(𝑐 + 𝑣). 
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Rovnice navzájom vynásobíme, čím získame rovnosť: 
 

𝑐2𝑡𝑡’ = 𝑎11
2 𝑡𝑡’(𝑐2 − 𝑣2)        ⇒      𝑎11

2 =
𝑐2

𝑐2 − 𝑣2
   ⇒      𝑎11 =

1

√1 − (𝑣2 𝑐2⁄ )
  

Transformačné vzťahy pre súradnice  𝑥  a  𝑥’  tak nadobudnú tvar: 
 

𝑥’ =
𝑥 − 𝑣𝑡

√1 − (𝑣2 𝑐2⁄ )
 ,            𝑥 =

𝑥’ + 𝑣𝑡’

√1 − (𝑣2 𝑐2⁄ )
 .                  (15.2.1.4) 

.                                    

Z týchto dvoch rovníc získame transformácie časových súradníc:  
 

𝑥’√1 − (𝑣2 𝑐2⁄ ) = 𝑥 − 𝑣𝑡     ⇒      𝑥’√1 − (𝑣2 𝑐2⁄ ) =  
𝑥’ + 𝑣𝑡’

√1 − (𝑣2 𝑐2⁄ )
− 𝑣𝑡   ⇒   

 

 𝑣𝑡 =
𝑥’ + 𝑣𝑡’

√1 − (𝑣2 𝑐2⁄ )
− 𝑥’√1 − (𝑣2 𝑐2⁄ )  =

𝑥’ + 𝑣𝑡’ − 𝑥’[1 − (𝑣2 𝑐2⁄ )]

√1 − (𝑣2 𝑐2⁄ )
 ⇒  

𝑣𝑡 =
𝑣𝑡’ + 𝑥’(𝑣2 𝑐2⁄ )

√1 − (𝑣2 𝑐2⁄ )
 , 

 

odkiaľ získavame výsledný transformačný vzťah  medzi časovými súradnicami t  a  t’:  
 

𝑡 =
𝑡’ + 𝑥’(𝑣 𝑐2⁄ )

√1 − (𝑣2 𝑐2⁄ )
 .                                      (15.2.1.5) 

 

Podobným postupom by sme získali aj opačný transformačný vzťah. t.j. 

vyjadrenie času  𝑡’ pomocou času  𝑡.  

 Transformačné vzťahy sme počítali v špeciálnom prípade, keď vzájomná 

rýchlosť sústav mala iba  x-ovú zložku. Vtedy sa súradnice 𝑦 a 𝑧  nemenia, takže 

kompletné Lorentzove transformačné vzťahy môžeme pre tento špeciálny prípad 

zapísať takto: 

𝑥’ =
𝑥 − 𝑣𝑡

√1 − (𝑣2 𝑐2⁄ )
 ,            𝑥 =

𝑥’ + 𝑣𝑡’

√1 − (𝑣2 𝑐2⁄ )
 

 

                                     𝑦’ = 𝑦                                        𝑦 = 𝑦’ 
                                     𝑧’ = 𝑧                                         𝑧 = 𝑧’ 
 

 𝑡’ =
𝑡 − 𝑥(𝑣 𝑐2⁄ )

√1 − (𝑣2 𝑐2⁄ )
 ,              𝑡 =

𝑡’ + 𝑥’(𝑣 𝑐2⁄ )

√1 − (𝑣2 𝑐2⁄ )
 .              (15.2.1.6) 

 

Galileiho transformácie sú špeciálnym prípadom týchto transformácií, a to pri 

malých vzájomných rýchlostiach inerciálnych sústav, t.j. keď  𝑣  𝑐 , resp. pri c  .  

Výraz  𝑣/𝑐2 vtedy môžeme zanedbať a odmocninu v menovateli považovať za rovnú 

jednotke. Zo vzťahu (15.2.1.5) vtedy vyplýva   𝑡 = 𝑡’, čo znamená, že časové súrad-

nice bodovej udalosti sú v takýchto sústavách rovnaké. Predpokladom c   
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v podstate akceptujeme okamžité šírenie signálov na diaľku, čo predpokladá klasická 

mechanika, vrátane Newtonovej teórie o gravitačnom pôsobení..   

Na záver je vhodné znova pripomenúť, že Lorentzove transformácie (15.2.1.6) 

sa týkajú dvoch inerciálnych sústav, ktorých osi  𝑥  ležia v jednej priamke. Existujú 

transformačné vzťahy týkajúce sa inej vzájomnej orientácie sústav, sú pochopiteľne 

zložitejšie, ale z fyzikálneho hľadiska neprinášajú nové informácie.  

  

 

Kontrolné otázky 

1. Čím sa odlišujú Lorentzove transformácie od Galileiho? 

2. Kedy sa Lorentzove transformácie redukujú na Galileiho? 

3. V akom prípade sa súradnice y a z zachovávajú? Kedy by sa transformovali?  

 

 

 

15.2.2   Kontrakcia dĺžok a dilatácia času 

 

Z Lorentzových transformačných vzťahov vyplýva, že  rozmery predmetov sa 

z  rôznych inerciálnych sústav nejavia ako rovnaké. Pritom hneď v úvode treba 

upozorniť, že tento jav by bol reálne pozorovateľný až pri takých vzájomných 

rýchlostiach sústav, ktoré sú porovnateľné s rýchlosťou svetla.  

Predpokladajme, že v sústave  S’ na osi  𝑥’ je umiestnená tyč, ktorej koncové 

body majú súradnice  𝑥1’ a  𝑥2’ , takže jej dĺžka v tejto sústave je   ’ = 𝑥2’ − 𝑥1’. Ak 

chceme určiť dĺžku tyče zo sústavy S, ktorá sa vzhľadom na tyč pohybuje, musíme 

súradnice jej koncov zmerať v tejto sústave súčasne (v jedinom okamihu), inak by sa 

tyč počas merania posunula. Preto musíme použiť taký transformačný vzťah, v ktorom 

vystupuje čas  𝑡  sústavy  S a nie čas 𝑡’: 
 

𝑥’1 =
𝑥1 − 𝑣𝑡1

√1 − (𝑣2 𝑐2⁄ )
 ,          𝑥’2 =

𝑥2 − 𝑣𝑡2

√1 − (𝑣2 𝑐2⁄ )
  

 

pričom  𝑡2 = 𝑡1 .  Dĺžku tyče získame ako rozdiel súradníc: 
 

’ = 𝑥’2 − 𝑥’1 =
𝑥2 − 𝑥1

√1 − (𝑣2 𝑐2⁄ )
=



√1 − (𝑣2 𝑐2⁄ )
 

 

odkiaľ vyplýva výsledok  

 = ’√1 − (𝑣2 𝑐2⁄ ) .                                    (15.2.2.1)  
 

Keďže  √1 − (𝑣2 𝑐2⁄ ) < 1 ,  tak zo vzťahu  (15.2.2.1) vyplýva, že    ’ . Tyč bola 

v pokoji v sústave  S’,  takže z pohybujúcej sústavy sa tyč javí ako skrátená.  

 Situáciu môžeme otočiť a zo sústavy  S’ pozorovať tyč, ktorá je v pokoji v 

sústave  S. Teraz bude musieť merať súradnice koncových bodov  pozorovateľ zo 
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sústavy  S’, v rovnakých časových okamihoch  𝑡’1  =   𝑡’2. Preto treba použiť 

alternatívny transformačný vzťah a z neho vypočítať dĺžku tyče:  
 

𝑥1 =
𝑥’1 − 𝑣𝑡’1

√1 − (𝑣2 𝑐2⁄ )
 ,          𝑥2 =

𝑥’2 − 𝑣𝑡’2

√1 − (𝑣2 𝑐2⁄ )
  

 

odkiaľ pre vzťah medzi dĺžkami tyče meranými z dvoch rôznych inerciálnych sústav 

dostaneme:   

’ = √1 − (𝑣2 𝑐2⁄ ) .                                     (15.2.2.2) 
 

Aj v tomto prípade sa tyč javí ako kratšia tomu pozorovateľovi, ktorý sa vzhľadom na 

ňu pohybuje.  

 Všimnime si ešte jednu okolnosť – skrátenie tyče nezávisí od smeru pohybu 

tyče, či sa pohybuje smerom k pozorovateľovi, alebo od neho.  

___________________________ 
 

Príklad 15.2.2.1  Aká veľká by musela byť vzájomná rýchlosť sústav, aby sa pohybu-

júcemu pozorovateľovi javila tyč skrátená o 10% ?  

Riešenie: Použijeme vzťah (15.2.2.2), pričom požadujeme, aby ’/ = 0,9 .  

Výsledok:   v = 0,436 c ,  čo je takmer polovica rýchlosti svetla. 

___________________________   
  

Podobne ako dĺžka, ani časový interval medzi dvoma udalosťami pozoro-

vanými z dvoch inerciálnych sústav, nemusí byť rovnaký. Predpokladajme, že 

v sústave  S  v mieste  𝑥1  sa udejú dve krátke udalosti, jedna v čase   𝑡1 , druhá v čase  

𝑡2 . Časový interval medzi týmito udalosťami je  𝑡 = 𝑡2 − 𝑡1 . Pozorovateľ zo 

sústavy  S’ zaregistruje tieto udalosti v časových okamihoch  𝑡’1  a  𝑡’2 , pre ktoré 

podľa Lorentzových transformácií platí: 
 

𝑡’1 =
𝑡1 − 𝑥1(𝑣 𝑐

2⁄ )

√1 − (𝑣2 𝑐2⁄ )
 ,    𝑡’2 =

𝑡2 − 𝑥2(𝑣 𝑐
2⁄ )

√1 − (𝑣2 𝑐2⁄ )
  ,    pričom  𝑥2 = 𝑥1 . 

 

Takže pozorovateľ  v S’ nameria časový interval  
 

∆𝑡’ = 𝑡’2 − 𝑡’1 =
𝑡2 − 𝑡1

√1 − (𝑣2 𝑐2⁄ )
=

∆𝑡

√1 − (𝑣2 𝑐2⁄ )
 .           (15.2.2.3) 

 

Preto  𝑡’    𝑡 ,  takže pozorovaný časový interval v S’  je väčší než v sústave  S, 

v ktorej sa udalosti udiali na tom istom mieste.  

 Aj v tomto prípade sa rozdiel v dĺžkach časových intervalov reálne prejaví iba 

vtedy, keď vzájomná rýchlosť sústav je porovnateľná s rýchlosťou svetla. Preto sa 

tieto relativistické efekty – kontrakcia dĺžok a dilatácia časových intervalov – nedajú 

v bežnom živote pozorovať. A podobne ako pri kontrakcii dĺžky, ani v tomto prípade 

smer pohybu hodiniek voči pozorovateľovi neovplyvňuje výsledok. 

 S transformáciou časových súradníc súvisí aj relatívnosť súčasnosti dvoch 

udalostí. Ak v jednej sústave konštatujeme, že na dvoch rozličných miestach súčasne 
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blikli svetelné zdroje, z inej inerciálnej sústavy sa tieto udalosti nejavia ako súčasné. 

Nech v miestach  𝑥1  a  𝑥2 bliknú zdroje v čase   𝑡1 . V sústave  S’  budú tieto udalosti 

pozorované v okamihoch 

𝑡’1 =
𝑡1 − 𝑥1(𝑣 𝑐

2⁄ )

√1 − (𝑣2 𝑐2⁄ )
 ,    𝑡’2 =

𝑡1 − 𝑥2(𝑣 𝑐
2⁄ )

√1 − (𝑣2 𝑐2⁄ )
  , 

takže   

𝑡’2  −  𝑡’1 =
(𝑥1 − 𝑥2)(𝑣 𝑐

2⁄ )

√1 − (𝑣2 𝑐2⁄ )
 , 

odkiaľ vidno, že   𝑡’2  −  𝑡’1  sa nerovná nule.  

Tento výsledok nabáda k otázke, či sa pri pozorovaní z inej inerciálnej sústavy 

nemôže zameniť poradie dvoch udalostí. Je logické, že poradie príčinne súvisiacich 

udalostí sa nedá zameniť. Zameniť by sa dalo poradie len takých dvoch udalostí, ktoré 

sa udiali v miestach vzdialených viac než súčin rýchlosti svetla a časového intervalu 

medzi týmito udalosťami.  Vtedy sa druhá udalosť udiala prv, než k nej mohla prísť 

informácia o prvej udalosti, čo znamená, že prvá udalosť nemohla byť príčinou druhej.  

______________________________ 
 

Príklad 15.2.2.2  Častica má v našej laboratórnej sústave dobu života 10−6 s .  Aký je 

tento časový interval v sústave viazanej na túto časticu, ak sa pohybuje  rýchlosťou  

predstavujúcou 98 % rýchlosti svetla?  Akú dlhú dráhu prejde v našej laboratórnej 

sústave, a akú vo svojej? 

Riešenie. Vznik a zánik častice z hľadiska sústavy viazanej na časticu sa udial na tom 

istom mieste, takže z našej sústavy pozorujeme dlhšiu dobu jej života. Využijeme 

vzťah  (15.2.2.3):  ∆𝑡’ = ∆𝑡/√1 − 𝑣2/𝑐2 ,  pričom nečiarkovaná sústava je viazaná na 

časticu.  Takže  ∆𝑡’ = 10−6 s  a pre časový interval v sústave viazanej na časticu 

vychádza ∆𝑡 = 1,99 × 10−7s , čo je približne päťkrát menej. Prejdená dráha v našej 

sústave 𝑙 = 294 m ,  dráha v sústave viazanej na časticu je zrejme nulová.  

_____________________ 

 

Príklad 15.2.2.3 Svetelné hodiny   

Vo valcovej nádobe s výškou ℓ sa svetelný lúč odráža od zrkadiel umiestených na 

základniach, takže „tikanie“ takýchto hodín si vieme stotožniť s odrazmi lúča od 

základní. Na obrázku je nakreslená situácia z pohľadu vzťažnej sústavy vzhľadom na 

ktorú je nádoba v pokoji, ako aj z pohľadu sústavy, vzhľadom na ktorú sa nádoba 

pohybuje. Vypočítajte pomer časových intervalov potrebných na prelet lúča k opačnej 

základni v uvedených dvoch prípadoch za 

predpokladu, že svetlo sa šíri rýchlosťou 𝑐 

a pohybujúca sa sústava sa vzďaľuje 

rýchlosťou 𝑣.    
 

Riešenie: V sústave S’, vzhľadom na ktorú nech je nádoba v pokoji, časový interval 

potrebný na prelet svetelného signálu medzi základňami je vyjadrený vzťahom 



 18 

∆𝑡′ =
ℓ

𝑐
 . 

V sústave S, vzhľadom na ktorú sa nádoba pohybuje, je potrebný časový interval ∆𝑡 

dlhší, lebo svetlo pri rovnakej rýchlosti  𝑐  musí prejsť vzdialenosť  vyjadrenú 

vzťahom √ℓ2 + (𝑣∆𝑡)2 ,  kde 𝑣 je vzájomná rýchlosť sústav. Takže platí rovnosť: 
 

𝑐2(∆𝑡)2 = ℓ2 + (𝑣∆𝑡)2,  

odkiaľ vypočítame interval ∆𝑡: 

(∆𝑡)2(𝑐2 − 𝑣2) = ℓ2 ,      ∆𝑡 =
ℓ

√𝑐2 − 𝑣2
 ,     

   ∆𝑡 =
ℓ

𝑐

1

√1 − 𝑣2/𝑐2
 . 

Výsledok potvrdzuje predpokladaný vzťah medzi intervalmi:   ∆𝑡 > ∆𝑡′, t.j. zo 

sústavy, ktorá sa vzhľadom na nádobu pohybuje, časový interval sa javí ako dlhší. 

________________________________ 

 

Príklad 15.2.2.4  

Predpokladajm, že k Marsu (vzdialenosť 𝑑 = 8 × 1010 m) môžeme letieť rýchlosťou 

0,5 ∙  𝑐.  Ak let v našej sústave S  začal v čase  𝑡1 = 0, v akom čase 𝑡2  by sme prišli do 

cieľa? Ako by sa javil tento časový údaj na hodinách posádky kozmickej lode (𝑡2
′)?   

Ako by ohodnotila vzdialenosť  k Marsu (𝑑′) posádka lode? Začiatok cesty má 

v S súradnicu 𝑥1 = 0 , koniec cesty 𝑥2 = 8 × 10
10m . 

Riešenie:  

Z pohľadu sústavy viazanej na Zem čas  𝑡2  zodpovedá dobe letu, ktorú získame ako 

podiel vzdialenosti a rýchlosti: 

𝑡2 =
𝑑

𝑣
=

8 × 1010m

(0,5 × 3 × 108)m/s
= 5,333 × 102s . 

 

Čas 𝑡2
′  získame pomocou Lorentzovej transformácie: 

 

𝑡2
′ =

𝑡2 − (𝑣 𝑐
2⁄ )𝑥2 

√1 − (𝑣 𝑐⁄ )2
=
5,333 × 102 −

0,5
3 × 108

× 8 × 1010

√1 − (0,5)2
=
(5,333 − 4/3) × 102

0,866
 

 

𝑡2
′ = 4,6188 × 102 s . 

 

Z hľadiska sústavy viazanej na pohybujúcu kozmickú loď sa vzdialenosť k Marsu javí 

ako kratšia  

𝑑′ = 𝑑√1 − (𝑣 𝑐⁄ )2 = 8 × 1010 × 0,866 = 6,9282 × 1010m . 
 

a tak pre trvanie letu ostaneme hodnotu 
 

∆𝑡′ =
𝑑′

0,5 𝑐
=
6,9282 × 1010

1,5 × 108
= 4,6188 × 102 s , 

 



 19 

čo sa zhoduje s údajom 𝑡2
′  . 

 

Očakávanú nulovú hodnotu súradnice 𝑥2
′   koncového bodu cesty z hľadiska sústavy 

viazanej na loď získame  aj Lorentzovou transformáciou: 
 

𝑥2
′ =

𝑥2 − 𝑣𝑡2 

√1 − (𝑣 𝑐⁄ )2
=
8 × 1010 − 1,5 × 108 × 5,333 × 102

0,866
= 0 . 

________________________________ 
 

Predĺženie časového intervalu môže nastať aj vplyvom Dopplerovho javu. Ak 

sa zdroj a pozorovateľ od seba vzďaľujú, pričom zdroj vysiela  krátke signály 

v pravidelných časových intervaloch (napr. záblesky svetla), tak pozorovateľ  nameria 

medzi zábleskami dlhší časový interval. Ak by sa však k sebe približovali, tak 

pozorovateľ nameria kratší interval.  Ide o ďalší jav, ktorý však nie je v rozpore 

s teóriou relativity. Ich veľkosti sú posúdené v nasledujúcej úvahe.  

Z hľadiska teórie relativity, ak sa zdroj vzďaľuje od pozorovateľa rýchlosťou 𝑣, 

a vysiela signály s časovým odstupom ∆𝑡 , tak pozorovateľ nameria časový odstup 

∆𝑡’ = ∆𝑡/√1 − 𝑣2/𝑐2 .  Pri malom pomere 𝑣/𝑐 vyjadríme odmocninu prvými dvoma 

členmi binomického rozvoja: 

[1 −
𝑣2

𝑐2
]

−
1
2

≅ 1 +
1

2
(
𝑣2

𝑐2
) 

Pri Dopplerovom jave v takejto situácii na základe vzťahov zo šiestej kapitoly 

(šiesteho zošitka) 

∆𝑡’ = ∆𝑡
𝑐 + 𝑣

𝑐
= ∆𝑡 (1 +

𝑣

𝑐
) . 

 

Ide teda o porovnanie veľkosti členov  𝑣/𝑐 a 𝑣2/𝑐2, z ktorého je zrejmé, že pri malom 

pomere 𝑣/𝑐 sa výraznejšie prejaví Dopplerov jav. Táto okolnosť má význam pri 

sledovaní spektier veľmi vzdialených galaxií.  

 

Kontrolné otázky 
 

1. Tyč pohybujúca sa v kladnom smere osi x sa javí ako kratšia. Ako sa bude javiť,    

 ak sa bude pohybovať opačným smerom? 

2.  Rovnaké tyče sa nachádzajú v dvoch inerciálnych sústavách, ktoré sa navzájom 

pohybujú rýchlosťou 𝑣 .  Ktorá z nich sa javí ako kratšia? 

3.  Dvoje rovnakých hodiniek sa nachádzajú v dvoch inerciálnych sústavách        

     vzďaľujúcich sa od seba rýchlosťou 𝑣. Ktoré z hodiniek sa oneskorujú?  

4. Hodiny vzďaľujúce sa od nás sa oneskorujú. Čo budeme pozorovať, ak sa budú 

približovať? 

5. V čom je rozdiel medzi relativistickou dilatáciou času a Dopplerovým posunom      

frekvencie? 

  



 20 

 

15.2.3   Transformácia rýchlosti 

 

Z Galileiho transformačných vzťahov vyplýva, že rýchlosti sa sčítavajú tak, ako 

sa nám to javí z bežného pozorovania skladania pohybov. Michelsonov – Morleyov 

pokus však ukázal, že treba nájsť iný transformačný vzťah.  

Aj v tomto prípade budeme uvažovať o dvoch sústavách, ktoré majú vzájomne 

rovnobežné súradnicové osi, pričom ich začiatky sa navzájom vzďaľujú pozdĺž osí 𝑥, 

resp. 𝑥’.  V sústave  S nech sa pozdĺž osi  𝑥  pohybuje častica rýchlosťou  𝑢 = d𝑥/d𝑡. 

Pozorovateľ zo sústavy  S’ nameria častici rýchlosť  𝑢’ = d𝑥’/d𝑡’, pre ktorú podľa 

Galileiho transformačných vzťahov platí   𝑢’ = 𝑢 –  𝑣, kde  𝑣 je vzájomná rýchlosť 

sústav. Ako sa ukáže, Galileiho transformačný vzťah pre rýchlosť je špeciálnym 

prípadom Lorentzovho transformačného vzťahu. Rýchlosť 𝑢’ vypočítame pomocou  

Lorentzovho transformačného vzťahu pre súradnicu 𝑥’ ∶ 
 

𝑢’𝑥 =
d𝑥’

d𝑡’
=
d

d𝑡’
 (

𝑥 − 𝑣𝑡

√1 − (𝑣2 𝑐2⁄ )
) =

d𝑥
d𝑡’
− 𝑣

d𝑡
d𝑡’

√1 − (𝑣2 𝑐2⁄ )
=

d𝑥
d𝑡
d𝑡
d𝑡’
− 𝑣

d𝑡
d𝑡’

√1 − (𝑣2 𝑐2⁄ )
= 

 

=
𝑢𝑥 − 𝑣

√1 − (𝑣2 𝑐2⁄ )

d𝑡

d𝑡’
  . 

 

Na dokončenie výpočtu treba ešte vypočítať člen  d𝑡/d𝑡’, čo získame derivovaním 

transformačného vzťahu pre čas (15.2.1.6): 

 

d𝑡

d𝑡’
=
d𝑡

d𝑡’
 {
𝑡’ + 𝑥’(𝑣 𝑐2⁄ )

√1 − (𝑣2 𝑐2⁄ )
} =

1 + (𝑣 𝑐2⁄ )(𝑑𝑥’ d𝑡’⁄ )

√1 − (𝑣2 𝑐2⁄ )
=
1 + (𝑣 𝑐2⁄ )𝑢’𝑥

√1 − (𝑣2 𝑐2⁄ )
 . 

 

Po dosadení do predchádzajúceho vzťahu postupnou úpravou dostaneme: 
 

𝑢’𝑥 =
𝑢𝑥 − 𝑣

√1 − (𝑣2 𝑐2⁄ )

d𝑡

d𝑡’
=

𝑢𝑥 − 𝑣

√1 − (𝑣2 𝑐2⁄ )

1 + (𝑣 𝑐2⁄ )𝑢’𝑥

√1 − (𝑣2 𝑐2⁄ )
 , ⇒ 

 

𝑢’𝑥[1 − (𝑣
2 𝑐2⁄ )] = 𝑢𝑥 − 𝑣 + (𝑣 𝑐

2⁄ )𝑢𝑥𝑢’𝑥 − (𝑣
2 𝑐2⁄ )𝑢’𝑥    ⇒ 

 

𝑢’𝑥 (1 −
𝑢𝑥𝑣

𝑐2
) = 𝑢𝑥 − 𝑣 ,  

a odtiaľ konečný vzťah 

𝑢’𝑥 =
𝑢𝑥 − 𝑣   

(1 −
𝑢𝑥𝑣
𝑐2
)
 .                                               (15.2.3.1) 

 

Pre transformáciu zo sústavy  S‘  do sústavy  S platí podobný vzťah: 
 

𝑢𝑥 =
𝑢’𝑥 + 𝑣   

(1 −
𝑢’𝑥𝑣
𝑐2
)
 .                                               (15.2.3.2) 
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V obidvoch prípadoch vidno, že pri malých vzájomných rýchlostiach sústav, tj. keď 

výraz  𝑢𝑥𝑣/𝑐
2   1 , tak vzťahy sa zmenia na Galileiho transformácie rýchlosti.         

Z Lorentzových transformačných  vzťahov vyplývajú aj ďalšie zaujímavé vlastnosti, 

ktoré si overíme na nasledujúcich príkladoch. 

_______________________ 
 

Príklad 15.2.3.1  Dve častice sa pohybujú proti sebe rýchlosťami, 0,8 𝑐 a  0,7 𝑐 ,  ktoré 

nameral pozorovateľ nachádzajúci sa medzi nimi. Akú rýchlosť druhej častice by 

nameral pozorovateľ viazaný na prvú časticu?   

Riešenie. Častica s rýchlosťou 0,8c nech sa pohybuje v kladnom smere osi 𝑥 sústavy 

S viazanej na pozorovateľa, a na túto časticu viažme sústavu S’, takže do vzťahu 

(15.2.3.1)  dosadíme 𝑣 = +0,8𝑐. Druhá častica sa potom pohybuje opačným smerom, 

takže 𝑢𝑥 = −0,7𝑐 .  Po dosadení týchto hodnôt dostaneme 

𝑢’𝑥 =
𝑢𝑥 − 𝑣   

(1 −
𝑢𝑥𝑣
𝑐2
)
=

−0,7𝑐 − 0,8c

1 −
(−0,7𝑐)0,8c

𝑐2

=
−1,5 𝑐

1 + 0,56
≅ −0,96 𝑐 . 

Takže rýchlosť nie je väčšia než rýchlosť svetla.  

_____________________________________ 
 

Príklad 15.2.3.2  Vzhľadom na sústavu  S  sa pohybuje fotón rýchlosťou svetla, t.j. 

rýchlosťou  𝑢𝑥 = 𝑐 . Aká je jeho rýchlosť vzhľadom na sústavu S’, ktorá sa vzhľadom 

na sústavu  S  pohybuje rýchlosťou 𝑣 ?  

Riešenie:  Po dosadení údajov do vzťahu (15.2.3.1) dostaneme 

𝑢’𝑥 =
𝑐 − 𝑣

(1 −
𝑐𝑣
𝑐2
)
=

𝑐 − 𝑣

𝑐2 − 𝑐𝑣
𝑐2

=
𝑐2(𝑐 − 𝑣)

𝑐(𝑐 − 𝑣)
= 𝑐 , 

čo znamená, že fotón sa aj v čiarkovanej sústave pohybuje rovnakou rýchlosťou, ako 

v sústave  S.  Výsledok je v súlade s druhým Einsteinovým postulátom.  

_______________________________________ 
 

Druhý príklad dokumentuje skutočnosť, že rýchlosť svetla nezávisí od rýchlosti 

inerciálnej sústavy vzhľadom na zdroj svetla, vždy je rovnaká. Je to v zhode 

s Michelsonovým – Morleyovým experimentom i s pokusom s atómovými hodinami.  

 Z výsledného vzťahu vyjadrujúceho transformáciu rýchlosti vyplýva zaujímavý 

výsledok – pri extrapolácii rýchlosti svetla k nekonečne veľkej hodnote, vzťah sa mení 

na Galileiho. Teda aj v tomto prípade sa ukazuje, že klasický vzťah je špeciálnym 

prípadom relativistického vzťahu.  
 

 Transformujú sa aj zložky rýchlosti, ktoré sú kolmé na smer vzájomného 

pohybu sústav, tj. v tomto prípade kolmé na os 𝑥 . Napríklad pri pohybe telesa v smere 

osi 𝑦, keď sa jeho súradnica  𝑥  v sústave  S  nemení, teleso v sústavách S aj S’ prejde 

rovnakú vzdialenosť  𝑦′ = 𝑦,  v sústave S za časový interval 𝑡,  ale zo sústavy S’ 

sa tento časový interval javí ako dlhší.  To znamená, že pohyb v smere osi  𝑦  (a aj 

v smere osi 𝑧) sa z pohybujúcej sústavy javí ako pomalší (výpočet je v dodatku D2).   
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15.2.4   Časopriestor,  štvorvektory 
 

 

V karteziánskej súradnicovej sústave, v trojrozmernom priestore, používame na 

vyjadrenie polohy bodu v priestore tri súradnice:  𝑥, 𝑦, 𝑧.  Pri opise dejov v teórii 

relativity sa aj čas používa ako súradnica, ktorá je prostredníctvom Lorentzových 

transformácií zviazaná s karteziánskymi súradnicami. Tak vzniká akýsi štvorrozmerný 

časopriestor, ktorého súradnicami sú 

 𝑥,    𝑦,    𝑧,   𝑖𝑐𝑡 ,                                         (15.2.4.1) 
 

kde sa ako štvrtá súradnica nepoužíva priamo čas, ale súčin času a rýchlosti svetla. 

Tým aj táto súradnica nadobúda rozmer dĺžky a nie času. Z dôvodov matematickej 

výhodnosti sa k tejto súradnici navyše pripája imaginárna jednotka  𝑖 . Štyri súradnice 

v časopriestore určujú nielen polohu, ale aj časový okamih bodovej udalosti. Druhými 

mocninami súradníc bodovej udalosti sú výrazy  
 

𝑥2,    𝑦2,    𝑧2 ,   − 𝑐2𝑡2,                                  (15.2.4.2) 
 

ktoré majú tú vlastnosť, že ich súčet sa nezmení, keď súradnice bodovej udalosti 

transformujeme do inej inerciálnej sústavy prostredníctvom Lorentzových transfor-

mácií. Ide o podobnú vlastnosť ako v trojrozmernom priestore, kde sa pri transformácii 

polohového vektora   do pootočenej súradnicovej sústavy nezmení (zachová) súčet 

štvorcov jeho karteziánskych súradníc 𝑥2 + 𝑦2 + 𝑧2, rovnajúci sa druhej mocnine 

(štvorcu) jeho dĺžky. Inými slovami – pri takejto transformácii sa dĺžka vektora 

nezmení.  Z tejto úvahy vyplýva, že aj súradnice (15.2.4.1) môžeme považovať za 

súradnice vektora, pravda v štvorrozmernom časopriestore.  

 O  invariantnosti súčtu štvorcov súradníc (15.2.4.2) vzhľadom na transformáciu 

do inej inerciálnej sústavy sa presvedčíme tak, že všetky súradnice v súčte nahradíme 

súradnicami „čiarkovanými“, využitím Lorentzových transformácií (15.2.1.6): 
 

𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 ⇒ [
𝑥’ + 𝑣𝑡’

√1 − (𝑣2 𝑐2⁄ )
]

2

+ 𝑦’2 + 𝑧’2 − 𝑐2 [
𝑡’ + 𝑥’(𝑣 𝑐2⁄ )

√1 − (𝑣2 𝑐2⁄ )
]

2

. 

 

Jednoduchým výpočtom sa môžete presvedčiť,  že súčet výrazov v hranatých zátvor-

kách poskytne výsledok: 
 

 [
𝑥’ + 𝑣𝑡’

√1 − (𝑣2 𝑐2⁄ )
]

2

− 𝑐2 [
𝑡’ + 𝑥’(𝑣 𝑐2⁄ )

√1 − (𝑣2 𝑐2⁄ )
]

2

=  𝑥’ − 𝑐2𝑡’2 . 

 

Po doplnení súradníc 𝑦’ a 𝑧’ ktoré sa nemenili, dostávame očakávaný výsledok: 
 

𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 = 𝑥’2 + 𝑦’2 + 𝑧’2 − 𝑐2𝑡’2                   (15.2.4.3) 
 

 „Vzdialenosť“ medzi dvoma bodmi v štvorrozmernom časopriestore, t.j. 

„vzdialenosť“ medzi dvoma bodovými udalosťami, v teórii relativity nazývanú 
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interval , sa počíta analogickým spôsobom, ako v trojrozmernom priestore. Jej druhú 

mocninu vyjadruje vzťah 
 

𝑠2 = (𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 − 𝑐2(𝑡2 − 𝑡1)

2           (15.2.4.4) 
 

Súradnice (15.2.4.1) sú súradnicami bodu v štvorrozmernom časopriestore, teda 

súradnicami štvorvektora polohy. Zaužívalo sa všetky označovať jediným písmenom 

𝑥, a odlišovať len indexmi:  

𝑥1  ≡  𝑥 ,   𝑥2  ≡  𝑦 ,   𝑥3  ≡  𝑧,   𝑥4 ≡  𝑖𝑐𝑡 .                        (15.2.4.5) 
 

Pre takto zavedené súradnice nadobúdajú Lorentzove transformácie trocha 

odlišný tvar. Keď zavedieme označenie  𝛽 = 1 √1 − (𝑣 𝑐⁄ )2⁄ , potom transformácie 

vyzerajú takto: 
 

𝑥’1 =  𝛽 (𝑥1 + 𝑖
𝑣

𝑐
𝑥4) , 𝑥’2 = 𝑥2 , 𝑥’3 = 𝑥3 , 𝑥’4 = 𝛽 (𝑥4 − 𝑖

𝑣

𝑐
𝑥1) 

          (15.2.4.6) 

 Aj ďalšie vektorové veličiny sa v teórii relativity zavádzajú ako štvorvektory, 

napríklad štvorvektor  rýchlosti, hybnosti. či prúdovej hustoty.  
  

Pri štvorvektore rýchlosti sa jeho  prvá súradnica zavádza vzťahom (a 

podobne aj druhá a tretia): 
 

𝑢1  = 𝛽
d𝑥

d𝑡
=

d𝑥

d𝑡√1 − (𝑣 𝑐⁄ )2
=

 𝑢𝑥

√1 − (𝑣 𝑐⁄ )2
= 𝛽𝑢𝑥          (15.2.4.7) 

a štvrtá súradnica vzťahom  

𝑢4  =
𝑖𝑐 d𝑡

d𝑡√1 − (𝑣 𝑐⁄ )2
=

 𝑖𝑐

√1 − (𝑣 𝑐⁄ )2
= 𝛽𝑖𝑐 .              (15.2.4.8) 

 

Výraz  d𝑡√1 − (𝑣 𝑐⁄ )2  predstavuje tzv. vlastný čas, presnejšie vlastný časový 

interval, čím sa rozumie časový interval pozorovaný v  inerciálnej sústave  spojenej  s 

pohybujúcou  sa časticou.  Vlastný čas je invariantný, čo spolu s  invariantnosťou 

štvorvektora polohy zabezpečuje invariantnosť štvorvektora rýchlosti.  

 Tú si overíme tak, že najprv vypočítame druhú mocninu veľkosti štvorvektora 

rýchlosti častice, ktorá sa v sústave S pohybuje rýchlosťou 𝑢𝑥 (predpokladáme že 

druhá a tretia súradnica, sú nulové, čo neovplyvní výsledok). Pre súčet štvorcov prvej 

a štvrtej súradnice štvorvektora rýchlosti tak dostaneme: 

(𝑢1)
2 + (𝑢4)

2 = (𝛽𝑢𝑥)
2 + (𝛽𝑖𝑐)2 = 𝛽2(𝑢𝑥

2 − 𝑐2) =
𝑢𝑥
2 − 𝑐2

1 − (𝑣2 𝑐2⁄ )
.       (15.2.4.9)  

 

Invariantnosť veľkosti štvorvektora rýchlosti znamená, že v inej inerciálnej sústave 

súčet (𝑢’1)
2 + (𝑢’4)

2 poskytne rovnaký výsledok. Pri výpočte použijeme 

transformačné vzťahy (15.2.4.6) aplikované na štvorvektor rýchlosti (vzťahy pre druhú 

a tretiu súradnicu vynechávame, lebo sa transformáciou nemenia) a využijeme aj 

definície  (15.2.4.7) a (15.2.4.8) súradníc štvorvektora rýchlosti: 
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𝑢’1 =  𝛽 (𝑢1 + 𝑖
𝑣

𝑐
𝑢4),    𝑢’4 = 𝛽 (𝑢4 − 𝑖

𝑣

𝑐
𝑢1) 

 

𝑢1  = 𝛽𝑢𝑥 ,   𝑢4  = 𝛽𝑖𝑐 .  
 

Pre súčet štvorcov čiarkovaných súradníc tak dostávame: 
 

(𝑢’1)
2 + (𝑢’4)

2 = 𝛽2 {(𝑢1)
2 −

𝑣2

𝑐2
(𝑢4)

2 + 2𝑖
𝑣

𝑐
𝑢1𝑢4 + (𝑢4)

2 −
𝑣2

𝑐2
(𝑢1)

2 − 2𝑖
𝑣

𝑐
𝑢1𝑢4} 

 

= 𝛽2 {(𝑢1)
2 [1 −

𝑣2

𝑐2
] + (𝑢4)

2 [1 −
𝑣2

𝑐2
]} = (𝑢1)

2 + (𝑢4)
2.  

 

Výsledok ukazuje, že transformáciou do inej inerciálnej sústavy sa veľkosť 

štvorvektora rýchlosti nemení, že hodnota vyjadrená vzťahom (15.2.4.9)  sa pri 

transformácii zachováva.   
 

Štvorvektor rýchlosti je teda vzťahmi (15.2.4.7) a (15.2.4.8) dobre definovaný, 

lebo jeho veľkosť sa Lorentzovými  transformáciami nemení. Za predpokladu, že 𝑢𝑥 =

𝑣 ,  teda že „čiarkovaná“ sústava je spojená s pohybujúcou sa časticou, pre súčet 

druhých mocnín súradníc štvorvektora vychádza  hodnota  −𝑐2.  
 

 Ďalšie štvorvektory budú opísaná v nasledujúcich článkoch.  
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15.3  Mechanika v teórii relativity 

 
 

Nielen dĺžky a časové intervaly sa menia pri pozorovaní z rôznych inerciálnych 

sústav, ale aj hmotnosť telies. Zo vzťahu (15.2.3.1), vyjadrujúceho transformáciu 

rýchlosti vyplýva, že zrýchlenie telies pozorované z rozličných inerciálnych sústav, nie 

je rovnaké. To je v  rozpore s klasickou mechanikou, s Galileiho transformáciami, 

podľa ktorých je zrýchlenie vo všetkých inerciálnych sústavách rovnaké. Preto 

môžeme očakávať, že aj Newtonov zákon sily z hľadiska teórie relativity bude mať iný 

tvar. V tejto časti bude najprv odvodená závislosť hmotnosti telies od rýchlosti, 

v ďalšom článku vzťah medzi hmotnosťou a energiou, a v treťom článku vzťah medzi 

hybnosťou a energiou. Pritom vyjadrenie sily ako derivácie hybnosti podľa času 

zostáva rovnaké ako v klasickej mechanike, ale rozdiel je v závislosti hmotnosti od 

rýchlosti.   

 

 

15.3.1   Závislosť hmotnosti od rýchlosti 

 

V tomto článku bude odvodený vzťah, podľa ktorého sa pozorovaná hmotnosť 

telesa s rastúcou rýchlosťou telesa zväčšuje, pričom ako najmenšiu ju určí 

pozorovateľ, vzhľadom na ktorého je teleso v pokoji. Keď sa teleso začne pohybovať, 

pozorovateľ zaregistruje zväčšenie jeho hmotnosti.  

Budeme uvažovať o dvoch rovnakých telesách A, B, nehybne umiestnených 

v inerciálnych sústavách  S a S’, ktoré sa navzájom pohybujú rýchlosťou  𝑣. Teleso  A  

je umiestnené v začiatku sústavy S, teleso B v sústave S’, na jej osi 𝑦’ vo vzdialenosti  

𝑌  od začiatku sústavy (obr.15.3.1.1). Pripomeňme si, že podľa špeciálnych 

transformačných vzťahov (15.2.1.6)  𝑦’ = 𝑦 , takže teleso  A  má v obidvoch sústavách 

túto súradnicu  nulovú a teleso B súradnicu 𝑌.   
 

Keď sú začiatky sústav v istej vhodnej vzájomnej vzdialenosti, telesám udelíme  

(z pohľadu svojich sústav) rovnaké rýchlosti  v smeroch osí  𝑦, resp. 𝑦’ tak, aby sa 

stretli v strede vzdialenosti  𝑌, a po dokonale pružnom zraze vrátili do pôvodných 

polôh. Rýchlosť udelenú telesu  A  označíme ako 𝑢𝐴 , takže na návrat potrebuje časový 

interval 𝑇 = 𝑌/𝑢𝐴 . Teleso  B  v sústave  S’ na návrat do pôvodnej polohy potrebuje 

rovnaký časový interval (sústavy sú rovnocenné), vyjadrený vzťahom  𝑇 ’ = 𝑌/𝑢’𝐵 . 

S 
S‘ 

B 

A 
v 

uA 

u’B 

x x‘ 

y y’ 

Y 

S 

Obr. 15.3.1.1 
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Vzhľadom na rovnocennosť sústav sú rýchlosti telies, aj časové intervaly potrebné na 

návrat telies do pôvodnej polohy, z pohľadu svojich sústav, rovnaké. Časový interval 

𝑇 ’, potrebný na návrat telesa B do pôvodnej polohy, z pohľadu sústavy S je však dlhší 

než 𝑇, lebo sa uplatní dilatácia času.  A naopak, rovnako väčším sa javí časový interval 

𝑇  zo sústavy  S’. Preto z pohľadu sústavy S platí vzťah 

𝑇 ’ =
𝑇

√1 − (𝑣2 𝑐2⁄ )
  .                                       (15.3.1.1) 

 

 To sa prejaví aj na veľkosti rýchlosti v smere osi 𝑦 . Zatiaľ čo rýchlosť telesa B 

vzhľadom na sústavu S’ je  𝑢’𝐵 (a je rovnako veľká ako rýchlosť  𝑢𝐴 telesa A 

vzhľadom na sústavu S), jej veľkosť  𝑢𝐵 vzhľadom na sústavu S  je menšia (vzťah  

15.2.3.2): 

𝑢𝐵 = 𝑢’𝐵√1 − (𝑣
2 𝑐2⁄ )  .                                  (15.3.1.2) 

 

Hmotnosť telies teraz posúdime prostredníctvom zákona zachovania hybnosti, 

ktorého platnosť predpokladáme. Na telesá A a B pri zrážke nepôsobili vonkajšie sily, 

takže hybnosť sústavy dvoch telies by sa pri zrážke nemala zmeniť. Podľa pôvodného 

predpokladu sa teleso A  do východiskovej polohy vrátilo s pôvodnou rýchlosťou 𝑢𝐴 

a teda aj s pôvodnou hybnosťou.  Preto usudzujeme, že aj teleso B malo pred zrážkou 

v smere osi 𝑦 rovnakú hybnosť. Túto skutočnosť zapíšeme rovnosťou vyjadrujúcou 

zákon zachovania  hybnosti, pričom zákon zapíšeme z pohľadu sústavy  S, t.j. všetky 

veličiny v ňom vystupujúce, sa vzťahujú na túto sústavu: 
 

𝑚𝐴𝑢𝐴 = 𝑚𝐵𝑢𝐵 . 
 

Rýchlosť  𝑢𝐵 nahradíme podľa vzťahu (15.3.1.2): 
 

𝑚𝐴𝑢𝐴 = 𝑚𝐵𝑢’𝐵 √1 − (𝑣
2 𝑐2⁄ ) , 

 

ale už vieme, že veľkosti rýchlostí  𝑢’𝐵  a  𝑢𝐴  sú rovnaké. Po ich vykrátení získame 

vzťah 

𝑚𝐵 =
𝑚𝐴

√1 − (𝑣2 𝑐2⁄ )
 , 

 

ktorý už vyjadruje závislosť hmotnosti telesa od rýchlosti. Rýchlosť  𝑢𝐴 môže byť totiž 

celkom malá, takže  𝑚𝐴 môžeme v sústave  S  považovať za hmotnosť nepohy-

bujúceho sa telesa, zatiaľ čo teleso B sa vzhľadom na sústavu  S  pohybuje navyše aj 

veľkou rýchlosťou  𝑣. Telesá sme na začiatku úvahy považovali za rovnaké, takže 

vzťah pre závislosť hmotnosti od rýchlosti prepíšeme do konečného tvaru   
  

𝑚 =
𝑚𝑜

√1 − (𝑣2 𝑐2⁄ )
 ,                                      (15.3.1.2) 

 

kde  𝑚𝑜  predstavuje tzv. pokojovú hmotnosť telesa a  𝑚  jeho hmotnosť v prípade, že 

sa vzhľadom na pozorovateľa pohybuje rýchlosťou  𝑣.  
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 Tento výsledok, ktorý je v  rozpore s klasickým ponímaním hmotnosti, bol 

vierohodne experimentálne overený už v roku 1908 Alfredom Buchererom, ktorý 

zistil, že podiel elektrického náboja a hmotnosti elektrónu sa s narastajúcou rýchlosťou 

elektrónu zmenšuje. Pritom náboj elektrónu je relativistický invariant (vo všetkých 

inerciálnych sústavách je rovnako veľký  pozri článok 15.4.3), takže výsledok 

experimentu sa dá vysvetliť iba zväčšovaním hmotnosti. Odvtedy bolo uskutočnených 

mnoho pokusov potvrdzujúcich túto závislosť s vysokou presnosťou. Potvrdzuje sa aj 

v moderných urýchľovačoch elementárnych častíc. Keď rýchlosť častice dosahuje 

desať percent rýchlosti svetla, jej hmotnosť vzrastie iba o 5 tisícin, ale pri rýchlosti 0,9 

c  narastie na dvojnásobok.  
 

Na záver možno ani nie je potrebné uviesť poznámku, že zmena hmotnosti 

telesa, o ktorej sa hovorí v teórii relativity, neznamená zmenu počtu atómov, z ktorých 

sa skladá, ale zmenu jeho zotrvačných vlastností.  

 

 

 

 

15.3.2   Súvislosť hmotnosti a energie 

 

Kinetická energia sa v klasickej fyzike vyjadruje vzťahom  𝐸𝑘  =  (1/2)𝑚𝑣
2. 

Pritom sa samozrejme predpokladá, že hmotnosť telesa je nemenná. V predošlom 

článku bol však odvodený vzťah, vyjadrujúci nárast hmotnosti telies pri zväčšení 

rýchlosti vzhľadom na pozorovateľa a tak klasický vzorec nemôže byť korektný pri 

veľkých rýchlostiach, aké nadobúdajú napr. elementárne častice v urýchľovačoch. 

Častica získava kinetickú energiu urýchľovaním, pričom potrebnú prácu konajú 

urýchľujúce sily 𝐹. Východiskový vzťah na výpočet zmeny kinetickej energie bude 

preto rovnaký ako v klasickej fyzike: 

∆𝐸𝑘 = ∫ 𝐹𝑥

2

1

d𝑥 , 

 

kde čísla 1 a 2 predstavujú začiatočnú a koncovú súradnicu miesta pôsobenia sily, 

v tomto prípade pozdĺž osi  𝑥. Za silu do integrálu dosadíme deriváciu hybnosti častice 

podľa času  (vzťah 3.1.3.4 v zošitku o dynamike hmotného bodu), pričom 

predpokladáme, že sa pohybuje v smere osi  𝑥  rýchlosťou  𝑢: 
 

∆𝐸𝑘 = ∫ 𝐹𝑥

2

1

d𝑥 = ∫
d(𝑚𝑢)

d𝑡

2

1

𝑢d𝑡 = ∫ 𝑢 d(𝑚𝑢)
𝑢

0

. 

 

Keby sme počítali ďalej, predpokladajúc že hmotnosť  𝑚  je konštantná, dostali by 

sme klasický vzorec kinetickej energie. Do integrálu však za hmotnosť  𝑚  dosadíme 

vzťah (15.3.1.2), a tak treba vypočítať integrál 
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∆𝐸𝑘 = ∫ 𝑢 d (
𝑚𝑜𝑢

√1 − (𝑢2 𝑐2⁄ )
)

𝑢

0

 ,                              (15.3.2.1) 

 

kde  integračné medze  predstavujú interval od začiatočnej nulovej, po konečnú 

rýchlosť  𝑢.  

Pri výpočte integrálu použijeme pravidlo (𝑢𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′, resp. jeho 

integrálnu podobu, schematicky zapísanú v tvare ∫𝑢′𝑣 = 𝑢𝑣 − ∫𝑢𝑣′:  
 

∫ 𝑢 d (
𝑚𝑜𝑢

√1 − (𝑢2 𝑐2⁄ )
)

𝑢

0

=
𝑚𝑜𝑢

2

√1 − (𝑢2 𝑐2⁄ )
− ∫

𝑚𝑜𝑢

√1 − (𝑢2 𝑐2⁄ )

𝑢

0

 d𝑢 

       (15.3.2.2) 

Zostávajúci integrál sa vypočíta substitúciou  1 − (𝑢2 𝑐2⁄ ) = 𝑧2,  po ktorej dostaneme: 
 

∫
𝑚𝑜𝑢

√1 − (𝑢2 𝑐2⁄ )

𝑢

0

 d𝑢 = −∫ 𝑚𝑜𝑐
2

√1−(𝑢2 𝑐2⁄ )

1

𝑧 d𝑧

𝑧
= −𝑚𝑜𝑐

2 [√1 − (𝑢2 𝑐2⁄ ) − 1] . 

 

Výsledok dosadíme do vzťahu (15.3.2.1)  
 

∆𝐸𝑘 =
𝑚𝑜𝑢

2

√1 − (𝑢2 𝑐2⁄ )
+ 𝑚𝑜𝑐

2 [√1 − (𝑢2 𝑐2⁄ ) − 1] 

 

=
𝑚𝑜𝑢

2 +𝑚𝑜𝑐
2[1 − (𝑢2 𝑐2⁄ )]

√1 − (𝑢2 𝑐2⁄ )
− 𝑚𝑜𝑐

2  ⇒ 

 

∆𝐸𝑘 =
𝑚𝑜𝑐

2

√1 − (𝑢2 𝑐2⁄ )
− 𝑚𝑜𝑐

2 = 𝑚𝑐2 −𝑚𝑜𝑐
2 . 

 

Integrál (15.3.2.2) sme počítali v medziach od 0 po 𝑢, takže sme vypočítali celkovú 

kinetickú energiu. Preto môžeme napísať výsledný vzťah: 
 

𝐸𝑘 = 𝑚𝑐
2 −𝑚𝑜𝑐

2 .                                             (15.3.2.3) 

Keď ho napíšeme v  tvare:  

𝑚𝑐2 = 𝑚𝑜𝑐
2 + 𝐸𝑘 

môžeme ho interpretovať tak, že výraz 

𝐸 = 𝑚𝑐2                                                  (15.3.2.4) 
 

predstavuje celkovú energiu, 𝐸𝑘 kinetickú a  𝐸𝑜 = 𝑚𝑜𝑐
2  tzv. pokojovú energiu 

(častice, telesa). Podľa tohto vzťahu  hmotnosti 1 gram zodpovedá obrovská energia  

𝐸 = 9 × 1013 Ws = 2,5 × 107 kWh. 

Vyjadrenie kinetickej energie častice vzťahom (15.3.2.3) bolo potrebné použiť 

napríklad pri vysvetlení Comptonovho javu (pozri dodatok D4).  

Vzťah (15.3.2.3) vyjadrujúci kinetickú energiu prechádza do klasického tvaru 

uvedeného na začiatku tohto článku v prípade, keď častica (teleso) sa pohybuje malou 

rýchlosťou v porovnaním s rýchlosťou svetla,. Presvedčíme sa o tom binomickým 

rozvojom vzťahu: 
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𝐸𝑘 = 𝑚𝑐
2 −𝑚𝑜𝑐

2 = 𝑚𝑜𝑐
2 (1 −

𝑢2

𝑐2
)

−
1
2

−𝑚𝑜𝑐
2 ≅ 𝑚𝑜𝑐

2 (1 +
1

2

𝑢2

𝑐2
+⋯) −𝑚𝑜𝑐

2 ⇒ 

𝐸𝑘 =
1

2
𝑚𝑜𝑢

2 . 

Aj v tomto prípade teda platí, že klasický vzťah je špeciálnym prípadom 

relativistického vzťahu.  
 

Albert Einstein vo svojej knihe The Meaning of Relativity o vzťahu  𝐸 = 𝑚𝑐2  

napísal:  „Hmotnosť a energia sa vo svojej podstate zhodujú,  je to iba rôzne 

vyjadrenie toho istého“.  

Max Born v knihe o  Einsteinovej teórii relativity k tomuto vzťahu uvádza: 

„Hmota v najširšom význame  tohto slova (vrátane svetla a iných foriem tzv. čistej 

energie) má dve fundamentálne vlastnosti – zotrvačnosť, meranú jej hmotnosťou 

a schopnosť konať prácu, meranú jej energiou. Tieto dve vlastnosti sú si navzájom 

prísne úmerné. Keby kdekoľvek magnetické či elektrické polia nahromadili energiu, 

táto energia je vždy spojená so zotrvačnosťou. Elektróny a atómy sú príkladom 

gigantickej koncentrácie energie.“   
 

Podľa vzťahu 𝐸 = 𝑚𝑐2 sa počíta zisk energie pri jadrových reakciách, 

prebiehajúcich napríklad v jadrových reaktoroch, ale aj väzbová energia atómových 

jadier. Stabilné atómové jadro má vždy menšiu hmotnosť než súčet pokojových 

hmotností protónov a  neutrónov, z ktorých sa skladá. Rozdiel týchto hmotností 

vynásobený štvorcom rýchlosti svetla sa rovná energii, ktorou sú častice v jadre spolu 

viazané. Takto vypočítanú energiu treba jadru dodať, aby sa rozpadlo na svoje súčasti.  
 

Používanie vzťahu  𝐸 = 𝑚𝑐2  pri jadrových reakciách je nevyhnutnosťou, ale 

v podstate platí aj pri chemických reakciách. Tam však ide o také malé zmeny energie, 

ktoré sa nedajú overiť zmenou hmotnosti reagujúcich atómov. Pri chemických 

reakciách ide o zmeny energie nanajvýš na úrovni pár elektrónvoltov, pri jadrových 

reakciách sú to milióny elektrónvoltov. V atóme vodíka je elektrón viazaný k jadru – k 

protónu, na jeho uvoľnenie z atómu treba dodať energiu, čo znamená, že atóm vodíka 

má menšiu hmotnosť ako súčet hmotností elektrónu a protónu. Aj v tomto prípade 

však ide o energiu niekoľkých elektrónvoltov. Principiálne – teplý čaj má z nášho 

pohľadu väčšiu hmotnosť ako studený, lebo v teplom čaji sa molekuly pohybujú 

rýchlejšie ako v studenom a teda majú väčšiu hmotnosť. Sú to však prakticky 

nemerateľné rozdiely.   
 

 Relativistické vyjadrenie kinetickej energie častice (15.3.2.3) bolo potrebné 

použiť napríklad pri vysvetlení Comptonovho javu (pozri dodatok D4).  
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15.3.3   Súvislosť energie a hybnosti 
 

V predchádzajúcom článku bol odvodený výraz vyjadrujúci celkovú energiu 

pohybujúcej sa častice.   

𝐸 = 𝑚𝑐2                                                                       (15.3.3.1)  
 

Keď si uvedomíme, že hmotnosť  𝑚 závisí od rýchlosti  𝑢  a túto závislosť dosadíme 

do vzorca, dostaneme: 

𝐸 = 𝑚𝑐2 =
𝑚𝑜𝑐

2

√1−
𝑢2

𝑐2

   ⇒    𝐸2 (1 −
𝑢2

𝑐2
) = 𝑚𝑜

2𝑐4 . 

Ďalšími úpravami postupne dostaneme: 
 

𝐸2 − 𝐸2
𝑢2

𝑐2
= 𝑚𝑜

2𝑐4     ⇒     𝐸2 −𝑚2𝑐4
𝑢2

𝑐2
= 𝑚𝑜

2𝑐4    ⇒     𝐸2 −𝑚2𝑢2𝑐2 = 𝑚𝑜
2𝑐4 

 

Súčin  𝑝 = 𝑚𝑢  predstavuje hybnosť častice, ktorá sa vzhľadom na inerciálnu sústavu 

pohybuje rýchlosťou  𝑢 a má hmotnosť 𝑚 ,  takže posledný vzťah môžeme prepísať 
 

 𝐸2 − 𝑝2𝑐2 = 𝑚𝑜
2𝑐4 

a nakoniec vyjadriť energiu: 

𝐸 = √𝑚𝑜
2𝑐4 + 𝑝2𝑐2 .                                       (15.3.3.2) 

 

Výsledný vzťah poukazuje na skutočnosť, že celková energia častice závisí od jej 

pokojovej hmotnosti  𝑚𝑜  a od jej hybnosti.  
 

Štvorvektor hybnosti sa zavádza vzťahmi: 

𝑝1 = 𝑚𝑜𝑢1 ,    𝑝2 = 𝑚𝑜𝑢2 ,    𝑝3 = 𝑚𝑜𝑢3     𝑝4 = 𝛽𝑚𝑜𝑖𝑐 =
𝑖𝑚𝑐2

𝑐
= 𝑖

𝐸

𝑐
, 

(15.3.3.3) 

kde  𝐸  je energia častice. Pokojová hmotnosť  𝑚𝑜  je invariant, takže vynásobením 

súradníc štvorvektora rýchlosti touto hmotnosťou sa invariantnosť vektora nestratí.   

 Súradnice štvorvektora sily sa zavádzajú vzťahom: 𝐹𝑖 = (d𝑝𝑖)/d𝜏 ,  takže 

𝐹1 = 𝑚𝑜
d𝑢1

d𝜏
 ,   .  .  .  .  ,   𝐹4 =

𝑖

𝑐

d𝐸

d𝜏
 ,                           (15.3.3.4) 

kde  d𝜏 je diferenciál vlastného času.  
 

Zo vzťahu (15.3.3.2) môžeme získať zaujímavú informáciu o fotóne. Fotón má 

pokojovú hmotnosť nulovú, takže v jeho prípade  𝑚𝑜 =  0, čo po dosadení do vzťahu 

poskytne 𝐸 = 𝑝𝑐. Fotón má však energiu ℎ𝑓 , kde ℎ  je Planckova konštanta 

a 𝑓 zodpovedajúca frekvencia,  takže ak   ℎ𝑓 =  𝑝𝑐,  potom vzťah 
 

𝑝 = ℎ 
𝑓

𝑐
=
ℎ

𝜆
                                             (15.3.3.5) 

 

dáva do súvislosti hybnosť  𝑝 fotónu a jemu zodpovedajúcu vlnovú dĺžku 𝜆 . Hybnosť 

je v klasickej fyzike definovaná ako súčin hmotnosti častice a jej rýchlosti. Fotón sa 
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pohybuje rýchlosťou svetla a tak jeho hybnosť sa pokúsime zapísať v tvare  𝑚f 𝑐 , kde 

𝑚f by malo predstavovať hmotnosť priradenú fotónu. Potom môžeme napísať vzťah 

𝑚f𝑐 =
ℎ

𝜆
      ⇒     𝑚f =

ℎ

𝑐𝜆
=  
ℎ𝑓

𝑐2
 .                       (15.3.3.6) 

 

Takto vypočítaná hmotnosť fotónu nie je fiktívna, lebo fotón interaguje 

s gravitačným poľom (jeho dráha sa v silnom gravitačnom poli zakrivuje) a má aj 

zotrvačné vlastnosti, ktoré sa prejavujú napríklad tlakom svetla.  

________________________________ 

 

Príklad 15.3.3.1  

Guľka letiaca kolmo na rovinu steny uviazla  

v nej a vytvorila jamku. Situáciu posúdime 

z hľadiska dvoch vzťažných sústav. 

Vzhľadom na sústavu S  nech je stena 

v pokoji, pričom os 𝑦 nech je kolmá na rovinu 

steny. Zo sústavy  S’ , ktorá sa rýchlosťou 

𝑣 pohybuje rovnobežne s rovinou steny, sa 

doba preletu ∆𝑡′ guľky z východiskovej 

polohy  po stenu javí ako dlhšia v porovnaní s dobou ∆𝑡, pozorovanou v sústave S. 

Preto rýchlosť guľky je z hľadiska sústavy  S’ menšia. Hĺbka jamky sa však z pohľadu 

obidvoch sústav javí ako rovnaká (𝑦 = 𝑦’). Presvedčíme sa, že dôvodom je rovnaká 

hybnosť guľky z pohľadu uvedených dvoch sústav, a teda rovnaký je aj impulz 

odovzdaný stene.  
 

Riešenie: Predpokladáme, že rýchlosť 𝑢𝒚 guľky vzhľadom na sústavu S nie je 

relativistická, takže jej hmotnosť v sústave S je vlastne pokojovou hmotnosťou 𝑚𝑜 . 

Preto hybnosť 𝑝 guľky v tejto sústave je  𝑝 = 𝑚𝑜𝑢𝒚 .       

Vzhľadom na sústavu S’ má guľka hmotnosť  𝑚′ = 𝑚𝑜 √1 − 𝑣
2/𝑐2⁄  (vzťah 15.3.1.2), 

pritom rýchlosť 𝑢′𝒚 = 𝑢𝒚√1 − 𝑣
2/𝑐2  (dodatok D2), takže má hybnosť 

𝑝′ = 𝑚′𝑢′𝒚 =
𝛽𝑚𝑜𝑢𝒚

𝛽
= 𝑚𝑜𝑢𝒚 = 𝑝 . 

 

Treba poznamenať, že hybnosti sú rovnaké len v smere osi 𝑦. Zatiaľ čo v smere osí 𝑥 

má guľka  v sústave S  rýchlosť nulovú, tak v sústave S’ má rýchlosť 𝑣.  Preto zložky 

hybnosti v tomto smere nie sú rovnaké.  

___________________________________  

x 

y

x 
x’ 

y‘ 
𝑢𝑦 

𝑣 
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15.4  Relativistická elektrodynamika 
 

 

V predchádzajúcich článkoch sme sa mohli presvedčiť, aké zmeny do 

mechaniky prináša teória relativity, špeciálne Lorentzove transformácie. Zatiaľ čo 

podľa Galileiho transformácií sa zrýchlenie častice a teda ani Newtonov zákon sily 

prechodom do inej inerciálnej sústavy nemení (pozri 15.1.3.3), pri Lorentzových 

transformáciách to neplatí. Mení sa pri nich zrýchlenie, tým aj sila, a ani hmotnosť nie 

je invariantná. V elektrodynamike je to naopak – Lorentzove transformácie zachová-

vajú tvar Maxwellových rovníc, v ktorých je skoncentrovaná celá náuka o elektromag-

netických poliach, čo však neplatí o  Galileiho transformáciách.  

Nasledujúci článok sa zaoberá Lorentzovými transformáciami veličín charakte-

rizujúcich elektromagnetické pole.  Výsledkom bude napríklad zdôvodnenie poznatku, 

že zatiaľ čo vo vlastnej inerciálnej sústave elektrický náboj vytvára iba elektrostatické 

pole, tak toto pole sa z inej, pohybujúcej sa sústavy javí zložitejšie, pozostáva aj 

z magnetického poľa. Ukáže sa, že elektrické a magnetické polia sú iba dvoma 

stránkami jedinej reality, závisiace od pohybu pozorovateľa vzhľadom na zdroje 

týchto polí.     

 

 

 

15.4.1   Transformácia vektorov 𝑬 a 𝑩 . 

 

V tomto článku budú odvodené transformačné vzťahy vektorov intenzity 

elektrického poľa  𝑬  a  magnetickej indukcie  𝑩 . Základnou požiadavkou pritom bude  

kovariantnosť Maxwellových rovníc, t.j. zachovanie ich tvaru pri transformácii do inej 

inerciálnej sústavy. Budeme vychádzať z Maxwellových rovníc  opisujúcich elektro-

magnetické polia vo vákuu (článok 11.2.4 v zošitku 11), ktoré majú takýto tvar:  
 

divE = 0,     div𝐵 =  0,     rot𝐸 =  –
𝜕𝐵

𝜕𝑡
,      rot𝐵 =

1

𝑐2
𝜕𝐸

𝜕𝑡
 . 

 

Lorentzove transformácie, tak ako sú uvedené v článku 15.2.1, sú zapísané podľa 

jednotlivých súradníc, a ak ich chceme aplikovať na Maxwellove rovnice, tak aj tieto 

musíme rozpísať tak, aby v nich vystupovali derivácie podľa jednotlivých súradníc, 

nie iba značky  div  a  rot. Po ich rozpísaní vznikne zo štyroch až  osem rovníc. Z 

poslednej z uvedených Maxwellových rovníc získame tri rovnice: 
 

(1)
1

𝑐2
𝜕𝐸𝑥

𝜕𝑡
=
𝜕𝐵𝑧

𝜕𝑦
−
𝜕𝐵𝑦

𝜕𝑧
 ,   (2) 

1

𝑐2
𝜕𝐸𝑦

𝜕𝑡
=
𝜕𝐵𝑥

𝜕𝑧
−
𝜕𝐵𝑧

𝜕𝑥
 ,   (3)  

1

𝑐2
𝜕𝐸𝑧

𝜕𝑡
=
𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥

𝜕𝑦
 ,  

 

ale z  prvej uvedenej rovnice iba jednu, lebo je to v podstate skalárna rovnica 

(divergencia vektorovej funkcie poskytne skalárnu funkciu): 
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(4) 
𝜕𝐸𝑥

𝜕𝑥
+ 
𝜕𝐸𝑦

𝜕𝑦
+
𝜕𝐸𝑧

𝜕𝑧
= 0 . 

 

Zo zvyšných dvoch Maxwellových rovníc dostaneme ďalšie štyri skalárne rovnice:  
 

(5) 
𝜕𝐵𝑥

𝜕𝑡
=
𝜕𝐸𝑦

𝜕𝑧
−
𝜕𝐸𝑧

𝜕𝑦
 ,    (6) 

𝜕𝐵𝑦

𝜕𝑡
=
𝜕𝐸𝑧

𝜕𝑥
−
𝜕𝐸𝑥

𝜕𝑧
 ,     (7) 

𝜕𝐵𝑧

𝜕𝑡
=
𝜕𝐸𝑥

𝜕𝑦
−
𝜕𝐸𝑦

𝜕𝑥
 ,  

 

(8) 
𝜕𝐵𝑥

𝜕𝑥
+ 
𝜕𝐵𝑦

𝜕𝑦
+
𝜕𝐵𝑧

𝜕𝑧
= 0 . 

 

Ďalšou úlohou je transformácia týchto rovníc do „čiarkovanej“ inerciálnej 

sústavy, prostredníctvom Lorentzových transformácií. Vystupujú v nich parciálne 

derivácie, pri ktorých budeme súradnice vektorov  𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧 , 𝐵𝑥 , 𝐵𝑦  ,  𝐵𝑧   chápať ako 

zložené funkcie čiarkovaných a nečiarkovaných súradníc, čo zapíšeme v symbolickom 

tvare: 

𝑓 = 𝑓[𝑥′(𝑥, 𝑦, 𝑧, 𝑡),   𝑦′(𝑥, 𝑦, 𝑧, 𝑡),   𝑧′(𝑥, 𝑦, 𝑧, 𝑡),   𝑡′(𝑥, 𝑦, 𝑧, 𝑡)].  
 

Úvaha o parciálnych deriváciách takejto funkcie s využitím Lorentzových 

transformácií (pozri  dodatok D3) vedie k rovniciam (d) a (e):  
 

𝜕𝑓

𝜕𝑥
=  𝛽

𝜕𝑓

𝜕𝑥′
 −  𝛽

𝑣

𝑐2
𝜕𝑓

𝜕𝑡′
   (d) 

                                     

𝜕𝑓

𝜕𝑡
=  𝛽

𝜕𝑓

𝜕𝑡′
− 𝛽𝑣

𝜕𝑓

𝜕𝑥′
 .     (e) 

 

kde 𝛽 = 1 √1 − (𝑣 𝑐⁄ )2⁄  .  Tieto rovnice použijeme pri transformácii Maxwellových 

rovníc. Začneme rovnicou (1) 
 

1

𝑐2
𝜕𝐸𝑥

𝜕𝑡
=
𝜕𝐵𝑧

𝜕𝑦
−
𝜕𝐵𝑦

𝜕𝑧
 ,   

 

do ktorej dosadíme príslušné parciálne derivácie: 
 

1

𝑐2
𝛽
𝜕𝐸𝑥

𝜕𝑡′
− 𝛽

𝑣

𝑐2
𝜕𝐸𝑥

𝜕𝑥′
=
𝜕𝐵𝑧

𝜕𝑦′
−
𝜕𝐵𝑦

𝜕𝑧′
 .  (g) 

 

Nebyť druhého člena na ľavej strane tejto rovnice, takmer by už mala rovnaký tvar 

v čiarkovanej sústave, ako v nečiarkovanej (keby sme ešte súradniciam vektorov 𝑬 a 𝑩 

pridali čiarky). Druhý člen nahradíme pomocou rovnice (4), ktorá po transformácii má 

tvar: 

𝛽 
𝜕𝐸𝑥

𝜕𝑥′
− 𝛽

𝑣

𝑐2
𝜕𝐸𝑥

𝜕𝑡′
+ 
𝜕𝐸𝑦

𝜕𝑦′
+
𝜕𝐸𝑧

𝜕𝑧′
= 0 .    (h) 

              

Z rovnice (h) vypočítame výraz  𝛽(𝜕𝐸𝑥 𝜕𝑥
′⁄ ) a dosadíme do rovnice (g), a tak po 

krátkej úprave získame rovnicu 
 

1

𝑐2
𝜕𝐸𝑥

𝜕𝑡′
=
𝜕

𝜕𝑦′
[𝛽 (𝐵𝑧 −

𝑣

𝑐2
𝐸𝑦)] −

𝜕

𝜕𝑧′
[𝛽 (𝐵𝑦 −

𝑣

𝑐2
𝐸𝑧)]          (15.4.1.1) 
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Táto rovnica má už fakticky zhodný tvar s rovnicou (1), pravda ak zapíšeme nasle-

dujúce vzťahy: 

𝐸𝑥
′ = 𝐸𝑥 ,     𝐵𝑧

′ = [𝛽 (𝐵𝑧 −
𝑣

𝑐2
𝐸𝑦)] ,     𝐵𝑦

′ = [𝛽 (𝐵𝑦 −
𝑣

𝑐2
𝐸𝑧)], 

 

ktoré považujeme za transformačné vzťahy súradníc vektorov 𝑬 a 𝑩 . Transfor-

movaním ďalších Maxwellových rovníc získame nakoniec kompletný súbor 

transformačných vzťahov pre súradnice vektorov  𝑬 a 𝑩: 
 

𝐸𝑥
′ = 𝐸𝑥 ,      𝐸𝑦

′ =
𝐸𝑦 − 𝑣𝐵𝑧

√1 − (𝑣/𝑐)2
 ,     𝐸𝑧

′ =
𝐸𝑧 + 𝑣𝐵𝑦

√1 − (𝑣/𝑐)2
 , (15.4.1.2) 

     

𝐵𝑥
′ = 𝐵𝑥  ,       𝐵𝑦

′ =
𝐵𝑦 +

𝑣
𝑐2
𝐸𝑧

√1 − (𝑣/𝑐)2
 ,    𝐵𝑧

′ =
𝐵𝑧 −

𝑣
𝑐2
𝐸𝑦

√1 − (𝑣/𝑐)2
 .         (15.4.1.3) 

     

Zo získaných vzťahov vidno, že ak napríklad v jednej inerciálnej sústave sa 

pozoruje iba elektrostatické pole (magnetické pole nulové, t.j. 𝐵𝑥 = 𝐵𝑦 = 𝐵𝑧 = 0), 

v inej inerciálnej sústave sa pozorujú obidve polia. To má celkom racionálny dôvod. 

Ak tieto polia sú generované jediným elektrickým nábojom, tak v sústave, vzhľadom 

na ktorú je v pokoji, sa pozoruje iba elektrostatické pole. Vzhľadom na inú inerciálnu 

sústavu sa však náboj pohybuje rýchlosťou  𝑣, čím v tejto sústave vzniká elektrický 

prúd, ktorý vytvára aj magnetické pole. Zo vzťahov ďalej vyplýva, že guľovo 

symetrické elektrostatické pole v sústave, vzhľadom na ktorú je náboj v pokoji, sa 

z inej sústavy už javí inak, lebo zložka intenzity poľa v smere osi 𝑥 sa nezmení, ale 

v smeroch osí 𝑦 a 𝑧 sa intenzita zväčší, čím sa guľová symetria poruší.  

V nasledujúcom článku budú uvedené niektoré ďalšie dôsledky plynúce 

z týchto transformačných vzťahov.   

 

 

15.4.2   Súvislosť Coulombovho a Biotovho-Savartovho zákona 

 

V tomto článku sa presvedčíme, že ak je v sústave  S  elektrostatické pole 

nepohybujúceho sa náboja vyjadrené pomocou Coulombovho zákona, tak magnetické 

pole, vyvolané týmto nábojom v sústave  S’, ktorá sa 

vzhľadom na náboj pohybuje rýchlosťou  𝑣 , je v súlade 

s Biotovým-Savartovým zákonom.  

Umiestnime elektrický náboj veľkosti  𝑄  do 

začiatku súradnicovej sústavy S. V tejto sústave náboj 

vytvára len elektrostatické pole. V bode  A , ktorý je od 

začiatku sústavy vzdialený o  𝑟 , a leží v rovine súrad-

nicových osí  𝑦, 𝑧, určíme intenzitu tohto poľa. Vektor 𝑬 

intenzity elektrostatického poľa má v tomto bode súradnice 
 

x Obr. 15.4.2.1 

 

 

z 

A 

y 

r 

Q 
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𝐸𝑥 = 0 ,       𝐸𝑦 =
1

4πε𝑜

𝑄

𝑟2
 sin 𝜙 ,      𝐸𝑧 =

1

4πε𝑜

𝑄

𝑟2
 cos 𝜙 .          (15.4.2.1) 

Veľkosť vektora  𝑬  v bode  A je 
 

|𝐸| = √(𝐸𝑥)
2 + (𝐸𝑦)

2 + (𝐸𝑧)
2 =

1

4πε𝑜

𝑄

𝑟2
 . 

Z pohľadu sústavy S’, ktorá sa pohybuje v smere osi  𝑥  rýchlosťou  𝑣 , sa v bode  A  

elektrostatické pole javí inak. Podľa transformačných vzťahov (15.4.1.2) má vektor  𝑬’ 

takéto súradnice: 

𝐸𝑥
′ = 𝐸𝑥 = 0,       𝐸𝑦

′ = 𝛽𝐸𝑦 = 𝛽
1

4πε𝑜

𝑄

𝑟2
 sin 𝜙,       𝐸𝑧

′ = 𝛽𝐸𝑧 = 𝛽
1

4πε𝑜

𝑄

𝑟2
 cos 𝜙 . 

(15.4.2.2) 

a ak vypočítame veľkosť vektora 𝑬’, dostaneme výsledok 
 

|𝐸′| = √(𝐸𝑥
′ )2 + (𝐸𝑦

′ )2 + (𝐸𝑧
′)2 = 𝛽

1

4πε𝑜

𝑄

𝑟2
 . 

. 

To znamená, že vektory  𝑬  a  𝑬’  nemajú rovnakú veľkosť, a  ako už bolo uvedené 

vyššie,  v sústave  S’ pole nie je guľovo symetrické.  

Z pohľadu sústavy S’  sa v bode A pozoruje aj magnetické pole, s takýmito 

súradnicami vektora magnetickej indukcie: 
 

𝐵𝑥
′ = 0,    𝐵𝑦

′ = 𝛽
𝑣

𝑐2
 
1

4πε𝑜

𝑄

𝑟2
 cos 𝜙 = 𝛽

𝜇𝑜

4𝜋

𝑄 𝑣

𝑟2
 cos 𝜙 ,    𝐵𝑧

′ = −𝛽
𝜇𝑜

4𝜋

𝑄 𝑣

𝑟2
 sin 𝜙 , 

(15.4.2.3) 

pričom sme použili vzťah  1/c2 = 𝜀𝑜𝜇𝑜 mezi rýchlosťou svetla  𝑐, elektrickou 

konštantou  𝜀𝑜   a magnetickou konštantou  𝜇𝑜 . Pre veľkosť vektora  𝑩’ v bode A 

potom dostaneme  

𝐵′ = 𝛽
𝜇𝑜

4𝜋

𝑄 𝑣

𝑟2
 ,                                         (15.4.2.4) 

 

čo je vzťah veľmi pripomínajúci Biotov–Savartov vzorec. Slúži na výpočet indukcie 

magnetického poľa v okolí pohybujúceho sa elektrického náboja, pričom pri bežných 

rýchlostiach nábojov, napríklad vo vodičoch elektrického prúdu, parameter 𝛽 sa len 

zanedbateľne líši od hodnoty 1. Keď vynecháme tento parameter a namiesto náboja  𝑄  

vo vzťahu napíšeme ∆𝑄 , potom súčin  𝑣𝑄  môžeme nasledovne upraviť:    

𝑣 𝛥𝑄 =  
𝛥ℓ

𝛥𝑡
𝛥𝑄 =

𝛥𝑄

𝛥𝑡
𝛥ℓ = 𝐼𝛥ℓ , 

 

čo už je výraz vystupujúci v Biotovom – Savartovom vzťahu (vzťah 10.2.1.1 

v kapitole o magnetickom poli) 

𝑑𝐵 =
𝜇𝑜

4𝜋

𝐼 dℓ

𝑟2
 sin𝛾 . 

 

Vzhľadom na špeciálnu polohu bodu  A v uvažovanom prípade, sin 𝛾 =  1, takže sme 

dospeli  k zhode s Biotovým – Savartovým zákonom.  
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Podrobnejšie si ešte všimnime smer vektora  𝑩’. Na obrázku je znázornená 

vzťažná sústava  S, v rovine papiera ležia súradnicové osi  𝑦 a  𝑧, os 𝑥  smeruje za 

papier.  

 

Zo vzťahov (15.4.2.2) a (15.4.2.3) vyplýva, že platia nasledujúce úmernosti týkajúce 

sa veľkosti súradníc vektorov  𝑬  a 𝑩’:   
  

𝐵’𝑧  ~ 𝐸𝑦 ,    𝐵’𝑦 ~  𝐸𝑧   
 

ako je to znázornené aj na obrázku. Vektor  𝑩’ má smer dotyčnice kružnice, tak ako 

v okolí priameho vodiča elektrického prúdu. Sústava  S’  sa pohybuje smerom za 

papier, takže (kladný) náboj, umiestnený v začiatku sústavy  S, sa vzhľadom na 

sústavu  S’  pohybuje pred papier. S tým je v súlade aj smer vektora  𝑩’, určený 

pravidlom pravej ruky. 

Z výsledku vidno, že elektrostatické pole a magnetické pole sú vlastne len rôzne 

stránky jediného elektromagnetického poľa a že konkrétna vnímaná podoba závisí od 

vzájomného pohybu pozorovateľa a zdrojov tohto poľa, t.j. od elektrických nábojov. 

Súvislosť týchto polí umožňuje zaviesť tzv. štvorpotenciál – pozri nasledujúci článok.   

_____________________________________ 

Príklad 15.1.2  

Dva kladné rovnako veľké náboje 𝑄 a 𝑞 , sú 

vzdialené od seba o ℓ . Vzhľadom na 

sústavu S sú v pokoji, takže v tejto sústave 

pôsobí medzi nimi len elektrostatická 

odpudivá sila. Z pohľadu pohybujúcej sa 

sústavy S’ náboje vytvárajú magnetické 

pole, preto sa medzi nimi pozoruje aj 

príťažlivé magnetické pôsobenie.  Výsledná 

sila  𝐹’  medzi nábojmi pôsobiaca v tejto sústave má preto inú veľkosť ako sila 𝐹 

pôsobiaca v sústave S.  Presvedčíme sa, že veľkosť impulzov je pritom rovnaká, tj. že 

platí vzťah  𝐹∆𝑡 = 𝐹′∆𝑡′. 
Riešenie: 

Sila 𝐹 pôsobiaca na náboj 𝑞 posudzovaná z hľadiska sústavy S je čisto elektrostatická: 

 
x 

E 

y 

z 
r 

Ez 

Ey 

 
x 

y‘ 

z‘ 
r 

B’ 

By‘ 

Bz‘ 

Bz’  -Ey ,    By’  Ez            Obr. 15.4.2.2 

q 

Q 
x’ 

y‘ 𝑣 

x 

y 
ℓ 
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𝐹 = 𝑞𝐸𝑦 = 
1

4𝜋𝜀𝑜

𝑄𝑞

ℓ2
 ,     𝐸𝑦 = 

1

4𝜋𝜀𝑜

𝑄

ℓ2
  

Pri výpočte sily z hľadiska sústavy S’ treba využiť transformačné vzťahy (15.4.1.2) a 

(15.4.1.3) pre vektory intenzity elektrického poľa a  indukcie magnetického poľa: 

𝐸𝑥
′ = 𝐸𝑥 ,      𝐸𝑦

′ =
𝐸𝑦 − 𝑣𝐵𝑧

√1 − (𝑣/𝑐)2
= 𝛽(𝐸𝑦 − 𝑣𝐵𝑧),   𝐸𝑧

′ = 𝛽(𝐸𝑧 + 𝑣𝐵𝑦),   

𝐵𝑥
′ = 𝐵𝑥 ,       𝐵𝑦

′ = 𝛽 (𝐵𝑦 +
𝑣

𝑐2
𝐸𝑧),   𝐵𝑧

′ =  𝛽 (𝐵𝑧 −
𝑣

𝑐2
𝐸𝑦)  

pričom 𝐸𝑥 = 𝐸𝑧 = 0 ,  𝐵𝑥 = 𝐵𝑦 = 𝐵𝑧 = 0 .  (Os 𝑧  v pravotočivej sústave smeruje 

pred papier). Elektrostatická (odpudivá) sila pôsobiaca na náboj 𝑞 má v sústave S’ 

veľkosť 

𝐹𝑒
′ = 𝑞𝐸𝑦

′ = 𝛽𝑞𝐸𝑦 = 𝛽
1

4𝜋𝜀𝑜

𝑄𝑞

ℓ2
 , 

Magnetická príťažlivá sila pôsobiaca na náboj 𝑞 je vyvolaná magnetickým poľom, 

ktoré vzniklo pohybom náboja 𝑄 v smere vektora 𝑣. Podľa transformačného vzťahu 

vektor magnetickej indukcie má veľkosť (podľa pravidla pravej ruky má v mieste 

náboja 𝑞 len zložku v smere osi 𝑧) 

𝐵𝑧
′ = −𝛽

𝑣

𝑐2
𝐸𝑦 .  

Na náboj 𝑞 pohybujúci sa rýchlosťou 𝑣 potom pôsobí magnetická sila (vzťah 10.1.1.1)  

𝐹𝑚
′ = 𝑞𝑣𝐵𝑧

′ = −𝛽
𝑣2

𝑐2
𝑞𝐸𝑦 . 

Výsledná sila z pohľadu sústavy S’ : 

𝐹′ = 𝛽𝑞𝐸𝑦 − 𝛽
𝑣2

𝑐2
𝑞𝐸𝑦 = 𝛽𝑞𝐸𝑦 (1 −

𝑣2

𝑐2
) =

1

𝛽
𝑞𝐸𝑦 . 

Výsledná sila je teda menšia (𝛽 > 1), ale súčin sily a časového intervalu, t.j. impulz 

sily, je rovnaký, lebo časový interval pôsobenia sily z pohľadu sústavy S’ je dlhší: 

𝐹′∆𝑡′ =
1

𝛽
𝑞𝐸𝑦𝛽∆𝑡 = 𝑞𝐸𝑦∆𝑡 = 𝐹∆𝑡 . 

_______________________________ 

 

15.4.3   Invariantnosť elektrického náboja 

 

Invariantnosť náboja znamená, že sa z každej inerciálnej sústavy javí ako 

rovnako veľký, čiže vzhľadom na Lorentzove transformácie je invariantný. Dôkaz 

invariantnosti vychádza z rovnice kontinuity, ktorú upravíme tak, aby v nej namiesto 

vektora prúdovej hustoty vystupoval štvorvektor  prúdovej hustoty. Rovnica kontinuity 

sa v klasickej elektrodynamike zapisuje v tvare 
 

div (𝜌𝒖) +
𝜕𝜌

𝜕𝑡
= 0 , 

 

kde  𝜌  je objemová hustota elektrického náboja (vyjadrená ako funkcia priestorových 

súradníc),  𝒖  vektor rýchlosti pohybujúcich sa nábojov vzhľadom na zvolenú 

súradnicovú sústavu a  𝑡 je čas.  Keď divergenciu rozpíšeme podľa súradníc, 

dostaneme rovnicu 
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𝜕(𝜌𝑢𝑥)

𝜕𝑥
 +
𝜕(𝜌𝑢𝑦)

𝜕𝑦
+
𝜕(𝜌𝑢𝑧)

𝜕𝑧
+
𝜕𝜌

𝜕𝑡
= 0 . 

. 

Do posledného člena – do čitateľa i do menovateľa – doplníme výraz  𝑖𝑐 , kde  𝑖 je 

imaginárna jednotka a  𝑐 rýchlosť svetla, a tak dostaneme výraz, ktorý pripomína 

štvorvektor. V menovateli štvrtého člena sa objaví štvrtá súradnica polohového 

vektora bodovej udalosti 𝑥4  =  𝑖𝑐𝑡 , pričom v ostatných troch členoch priestorové 

súradnice  𝑥1 ≡ 𝑥,  atď. Rovnica kontinuity tak nadobudne tvar 
   

𝜕(𝜌𝑢𝑥)

𝜕𝑥1
 +
𝜕(𝜌𝑢𝑦)

𝜕𝑥2
+
𝜕(𝜌𝑢𝑧)

𝜕𝑥3
+
𝜕 (𝑖𝑐𝜌)

𝜕𝑥4
= 0 ,                   (15.4.3.1) 

 

čo nás nabáda k zavedeniu štvorvektora prúdovej hustoty, so súradnicami 
 

𝐽1 = 𝜌 𝑢𝑥 ,       𝐽2 = 𝜌 𝑢𝑦,      𝐽3 = 𝜌 𝑢𝑧,      𝐽4 = 𝑖 𝑐𝜌 .              (15.4.3.2) 
 

Ak sa v sústave  S  náboje nepohybujú,  vektor ich rýchlosti  𝒖  je nulový a nule sa 

rovnajú všetky jeho súradnice. Preto aj tri súradnice štvorvektora prúdovej hustoty sa 

rovnajú nule, zostane iba jeho štvrtá súradnica  𝐽4 = 𝑖 𝑐𝜌 . Vzhľadom na inú inerciálnu 

sústavu S’, sa však náboje pohybujú. Všetky súradnice štvorvektora prúdovej hustoty 

v tejto sústave získame pomocou transformačných vzťahov (15.2.6.5) platných pre 

štvorvektory, v ktorých 𝑣 je vzájomná rýchlosť sústav. Pre prehľadnosť ich tu znova 

uvedieme: 
 

𝑥1
′ = 𝛽 (𝑥1  +  𝑖

𝑣

𝑐
𝑥4) ,     𝑥2

′ = 𝑥2 ,    𝑥3
′ = 𝑥3 ,    𝑥4

′ = 𝛽 (𝑥4  −  𝑖
𝑣

𝑐
𝑥1) ,  

kde 𝛽 =
1

√1 − (v/c)2
. 

 

Na ich základe môžeme napísať súradnice vektora prúdovej hustoty v sústave S’: 
 

𝐽1
′ = 𝛽 𝑖

𝑣

𝑐
(𝑖𝑐𝜌) = −β𝜌𝑣 = −

𝜌𝑣

√1 − (𝑣/𝑐)2
,     𝐽2

′ = 0,     𝐽3
′ = 0,    𝐽4

′ =
i 𝑐𝜌

√1 − (𝑣/𝑐)2
. 

(15.4..3.3) 

Štvorvektor prúdovej hustoty má mať v čiarkovanej sústave analogický tvar ako 

v sústave S, takže    𝐽4
′ = 𝑖𝑐𝜌′; potom z porovnania vzťahov  (15.4..3.3) a (15.4.3.2) 

vyplýva,  

𝜌′ =
𝜌

√1 − (𝑣/𝑐)2
.                                            (15.4..3.4) 

 

Z tohto vzťahu vidíme, že objemová hustota elektrického náboja je najmenšia v tej 

sústave, vzhľadom na ktorú sú náboje v pokoji.  
  

Teraz vypočítame, ako sa pri tejto transformácii zmení veľkosť náboja, 

nachádzajúceho sa napr. v malom objeme  d𝑉 =  d𝑥 d𝑦 d𝑧 . Náboj prítomný v tomto 

objeme má veľkosť  

d𝑄 =  𝜌  d𝑉 . 
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Po transformácii do čiarkovanej sústavy, vzhľadom na kontrakciu dĺžky v smere osi  𝑥,  

dostaneme náboj 
 

d𝑄′ = 𝜌′d𝑉′ = 𝜌′ d𝑥′d𝑦′d𝑧′ =
𝜌

√1 − (𝑣/𝑐)2
[√1 − (𝑣/𝑐)2 d𝑥]  d𝑦𝑑𝑧 = 𝜌 d𝑥d𝑦d𝑧  

= 𝜌 d𝑉 =  d𝑄 . 
 

To znamená, že veľkosť náboja sa zachovala  elektrický náboj je invariantný, t.j. 

vzhľadom na všetky inerciálne sústavy rovnaký. 
 

Ďalším zo štvorvektorov, ktorý tiež  dokumentuje jednotu elektrických 

a magnetických javov, je štvorpotenciál,.  Tri z jeho štyroch súradníc súvisia 

s vektorovým potenciálom 𝑨(𝐴𝒙 ,  𝐴𝒚 , 𝐴𝒛 ) , ktorý bol zavedený vzťahom (10.2.5.5) 

v zošitku o magnetickom poli, štvrtá súvisí s  elektrostatickým potenciálom 𝜑 , 

zavedeným podľa vzťahu (8.1.5.1) v zošitku o elektrostatickom poli. Súradnice 

štvorpotenciálu vyzerajú takto: 
 

𝐴1 = 𝐴𝑥 ,   𝐴2 = 𝐴𝑦 ,   𝐴3 = 𝐴𝑧  ,   𝐴4 =  𝑖𝜑  .  
 

Využitím transformačných vzťahov (15.2.4.6) pre štvorvektory dostaneme: 
  

𝐴′1 = 𝛽 (𝐴1 + 𝑖
𝑣

𝑐
𝐴4),       𝐴′2 = 𝐴2 ,       𝐴′3 = 𝐴3 ,        𝐴′4 =  𝛽 (𝐴1 − 𝑖

𝑣

𝑐
𝐴4). 

 

z ktorých opäť vidno ako sa „mieša“ elektrické pole s magnetickým, že  hodnotenie 

elektromagnetického poľa závisí od vzťažnej sústavy, z ktorej pole posudzujeme. 
 

Treba ešte spomenúť silu pôsobiacu na pohybujúci sa elektrický náboj 

v elektromagnetickom poli. Ak v istej inerciálnej vzťažnej sústave je sila vyjadrená 

Lorentzovým vzťahom  𝑭 = 𝑞(𝑬 + 𝒗 × 𝑩), tak hľadiska inej inerciálnej sústavy má 

tvar  𝑭′ = 𝑞(𝑬′ + 𝒗′ × 𝑩′), kde si treba všimnúť, že bez čiarky je len náboj, ktorého 

veľkosť sa transformáciou nemení.  
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Dodatky 

 
D1 
 

Grafické  znázornenie  dvoch inerciálnych súradnicových sústav  
 

V článku 15.2.1 v súvislosti s odvodením Lorentzových transformácií   je 

použitá dvojrozmerná súradnicová sústava s jednou osou priestorovou (osou 𝑥) 

a jednou časovou, ako je to aj na tomto obrázku. Pri 

takomto zobrazení sa poloha častice na osi 𝑥 v danom 

časovom okamihu 𝑡 zobrazuje ako bod na ploche 

určenej osami 𝑥, 𝑡 , ktoré nech reprezentujú sústavu S. 

Pohyb častice pozdĺž osi  𝑥  v závislosti od času sa 

zobrazí ako čiara, pri pohybe stálou rýchlosťou 𝑣 ako 

priamka. Na obrázku je hrubšou úsečkou so šípkou 

znázornený takýto pohyb z bodu O do bodu B.  

Ako sa v takejto rovine dá zobraziť sústava S’, vzhľadom na ktorú  je častica 

 v pokoji? Takáto sústava s osami  𝑥′, 𝑡′ , ktorá sa vzhľadom na sústavu S pohybuje 

spolu s  časticou rýchlosťou 𝑣, je znázornená čiarkovanými priamkami, pričom 

príslušné osi (𝑡 a 𝑡′ , resp. 𝑥 a 𝑥′ ) zvierajú navzájom uhol   . Z pohľadu sústavy S’ sa 

súradnica x′ bodu nemení, ale času pribúda, takže   priebeh tohto „deja“ sa v sústave 

S’ javí ako pohyb bodu len po časovej osi sústavy. Pritom časová os sústavy  S’ je 

totožná s priamkou zobrazujúcou pohyb bodu v sústave S.  

 Uhol   sa v sústave  S  dá vypočítať z geometrie obrázku pomocou funkcie 

tangens a súradníc bodu  B (𝑡𝐵, 𝑥𝐵):   
tg = (𝑥𝐵 𝑡𝐵⁄ ), 

pričom zjavne  𝑥𝐵 𝑡𝐵⁄ = 𝑣  je rýchlosť častice, a teda aj vzájomná rýchlosť sústav S a 

S’. To teda znamená, že súradnicové osi inerciálnej sústavy S’, ktorá sa vzhľadom na 

sústavu S pohybuje rýchlosťou 𝑣 pozdĺž osi 𝑥  sa zobrazia ako pootočené o uhol, pre 

ktorý platí   tg = 𝑣 .  (Ale osi 𝑥 a 𝑥’ príslušných karteziánskych sústav ležia v jednej 

priamke!) 

Geometricky je výpočet v poriadku, ale zatiaľ čo rýchlosť sa meria napríklad 

v metroch za sekundu, tak funkcia tangens je bezrozmerová. Situácia sa dá napraviť 

tak, že časová súradnica sa vynásobí konštantou s rozmerom  m/s. Tak vznikne 

veličina s rozmerom dĺžky (sekunda sa vykráti), teda rovnakým ako pri osi 𝑥.  Je 

výhodné za túto konštantu zvoliť rýchlosť svetla, lebo je to univerzálna konštanta, 

rovnaká vo všetkých vzťažných sústavách. Toto sa využíva aj pri zavádzaní tzv. 

štvorvektorov, kde k  trom priestorovým súradniciam sa pridáva štvrtá – časová 

súradnica vynásobená rýchlosťou svetla.  Na graf  možno nanášať veličiny v ľubo-

voľne zvolenej mierke takže veľká rýchlosť svetla nie je na prekážku.   

 

 

B 

O 

𝑥 

𝑡  

x’ 

t’ 
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D2 
Transformácia zložky rýchlosti kolmej na os 𝒙 .  
 

Ak sa častica pohybuje len v smere kolmom na os 𝑥, napríklad  v smere osi 𝑦 

sústavy S, tak sa jej rýchlosť 𝑢’𝑦 v sústave S’  javí ako menšia v porovnaní s veľ-

kosťou rýchlosti 𝑢𝑦 vzhľadom na sústavu S. Pri takomto pohybe 𝑦’ ≡ 𝑦 ,   𝑥2 = 𝑥1 : 

 

𝑢’𝑦 =
𝑦’2 − 𝑦’1

𝑡’2 − 𝑡’1
=

𝑦2 − 𝑦1

(𝑡2 − 𝑥2(𝑣 𝑐
2⁄ ))

√1 − (𝑣2 𝑐2⁄ )
−
(𝑡1 − 𝑥1(𝑣 𝑐

2⁄ ))

√1 − (𝑣2 𝑐2⁄ )

  

 

𝑢’𝑦 = 
(𝑦2 − 𝑦1)√1 − (𝑣2 𝑐2⁄ )

(𝑡2 − 𝑡1) − (𝑥2 − 𝑥1)(𝑣
2 𝑐2⁄ )

=
(𝑦2 − 𝑦1)√1 − (𝑣2 𝑐2⁄ )

(𝑡2 − 𝑡1)
   

 

𝑢’𝑦 = 𝑢𝑦√1 − (𝑣
2 𝑐2⁄ ) ,     

 

    𝑢’𝑦 < 𝑢𝑦 . 

 

 

D3 

Poznámka k transformácii Maxwellových rovníc 

 

Pri transformácii veličín elektromagnetického poľa treba chápať súradnice 

vektorov  𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧 , 𝐵𝑥 , 𝐵𝑦  ,  𝐵𝑧   ako zložené funkcie čiarkovaných a nečiarko-

vaných súradníc, čo zapíšeme v  tvare: 
 

𝑓 = 𝑓[𝑥′(𝑥, 𝑦, 𝑧, 𝑡),   𝑦′(𝑥, 𝑦, 𝑧, 𝑡),   𝑧′(𝑥, 𝑦, 𝑧, 𝑡),   𝑡′(𝑥, 𝑦, 𝑧, 𝑡)].  
 

Parciálnu deriváciu podľa premennej 𝑥 vyjadríme takto: 
 

𝜕𝑓

𝜕𝑥
=  
𝜕𝑓

𝜕𝑥′
𝜕𝑥′

𝜕𝑥
+
𝜕𝑓

𝜕𝑦′
𝜕𝑦′

𝜕𝑥
+
𝜕𝑓

𝜕𝑧′
𝜕𝑧′

𝜕𝑥
+
𝜕𝑓

𝜕𝑡′
𝜕𝑡′

𝜕𝑥
 ,   (a) 

 

a analogicky vyzerajú aj parciálne derivácie podľa premenných 𝑦  a 𝑧 . Derivácia 

podľa premennej  𝑡: 
 

𝜕𝑓

𝜕𝑡
=  
𝜕𝑓

𝜕𝑥′
𝜕𝑥′

𝜕𝑡
+
𝜕𝑓

𝜕𝑦′
𝜕𝑦′

𝜕𝑡
+
𝜕𝑓

𝜕𝑧′
𝜕𝑧′

𝜕𝑡
+
𝜕𝑓

𝜕𝑡′
𝜕𝑡′

𝜕𝑡
  .   (b) 

 

Vzhľadom na Lorentzove transformácie (vzťahy 15.2.1.6,  𝛽 = 1 √1 − (𝑣 𝑐⁄ )2⁄  )  

𝑥′ = 𝛽(𝑥 − vt),     𝑦′ = y,     𝑧′ = z,      𝑡′ = 𝛽 (𝑡 −
𝑣

𝑐2
𝑥) , (𝑐) 

premenné  𝑥′a 𝑡′ závisia len od premenných 𝑥 ,  𝑡 , pričom premenné   𝑦′ a  𝑧′ od nich 

nezávisia.  Preto platí   
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𝜕𝑦′

𝜕𝑥
=
𝜕𝑧′

𝜕𝑥
=
𝜕𝑦′

𝜕𝑡
=
𝜕𝑧′

𝜕𝑡
= 0 , 

Ďalej platí  

𝜕𝑥′

𝜕𝑥
= 𝛽,   

𝜕𝑥′

𝜕𝑡
= −𝛽𝑣 ,   

𝜕𝑡′

𝜕𝑥
= −𝛽

𝑣

𝑐2
 ,   
𝜕𝑡′

𝜕𝑡
= 𝛽 . 

 

Po dosadení do vzťahov (a) a (b) tak dostaneme pre parciálne derivácie podľa 𝑥 

a podľa 𝑡:  
  

𝜕𝑓

𝜕𝑥
=  𝛽

𝜕𝑓

𝜕𝑥′
 −  𝛽

𝑣

𝑐2
𝜕𝑓

𝜕𝑡′
   (d) 

                                     

𝜕𝑓

𝜕𝑡
=  𝛽

𝜕𝑓

𝜕𝑡′
− 𝛽𝑣

𝜕𝑓

𝜕𝑥′
 .     (e) 

 

 

D4 

Comptonov jav  

 

Ide o zmenu frekvencie prislúchajúcej fotónu, ku ktorej dochádza pri zrážke 

s voľným elektrónom. Fotón odovzdá elektrónu časť svojej energie aj časť hybnosti, 

a keďže sa jeho rýchlosť nemôže zmenšiť, strata energie sa prejaví zmenšením  

frekvencie 𝑓,  resp. zväčšením vlnovej dĺžky  . Fotón sa v dôsledku zrážky  odchýli 

od pôvodného smeru o istý uhol  , elektrón získa kinetickú energiu a začne sa 

pohybovať.   

Jav sa nedá exaktne vysvetliť na základe klasickej fyziky. Energiu fotónu treba 

vyjadriť kvantovo ako súčin ℎ𝑓 Planckovej konštanty ℎ a frekvencie 𝑓 prislušnej vlny, 

a kinetickú energiu elektrónu relativistickým vzťahom (𝑚 − 𝑚𝑜)𝑐
2, kde 𝑚,je 

hmotnosť elektrónu po zrážke a  𝑚𝑜 pred zrážkou (pokojová hmotnosť). Výpočet je 

založený na aplikácii zákonov zachovania energie a hybnosti sústavy fotón – elektrón, 

tj. energia, ani hybnosť sústavy ako celku sa pri zrážke nezmenia.  

Vychádza sa z predpokladu, že pred zrážkou mal elektrón nulovú kinetickú energiu aj 

nulovú hybnosť, fotón energiu  ℎ𝑓 a hybnosť   

ℎ𝑓 𝑐⁄ = ℎ/ .  

Zachovanie energie sa vyjadruje vzťahom:  
 

ℎ𝑓 = ℎ𝑓 ′ + (𝑚𝑐2 −𝑚𝑜𝑐
2) 

 

a zachovanie hybnosti (vektorovej veličiny) sa 

vyjadruje dvoma rovnicami v smere priamky 

prilietavajúceho fotónu a v smere naň kolmom:   
  

ℎ


=
ℎ

′
cos𝜑 + 𝑚𝑣 cos𝜑  

 

0 =
ℎ

′
sin𝜑 −𝑚𝑣 sin . 

– 

– 

h/ 

h/
’ 

 

 
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Na základe uvedených rovníc sa získa zmena vlnovej dĺžky prislúchajúcej fotónu:  
 

′ −  =
ℎ

𝑚𝑜𝑐
(1 − cos𝜑) , 

kde  ℎ (𝑚𝑜𝑐)⁄ = 2,42 × 10−12m  je tzv. Comptonova vlnová dĺžka. Zmena vlnovej 

dĺžky nezávisí od energie fotónu, teda od frekvencie resp. vlnovej dĺžky, ale len od 

uhla 𝜑 . 
  

Jav pozoroval a opísal A. Compton v roku 1923. 
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SÚHRN VZŤAHOV 

 

Lorentzove tranformácie  S   S’ 

𝑥’ =
𝑥 − 𝑣𝑡

√1 − (𝑣2 𝑐2⁄ )
 ,    𝑦’ = 𝑦 , 𝑧’ = 𝑧 

 

𝑡’ =
𝑡 − 𝑥(𝑣 𝑐2⁄ )

√1 − (𝑣2 𝑐2⁄ )
 

  

Lorentzove tranformácie S’   S  

𝑥 =
𝑥’ + 𝑣𝑡’

√1 − (𝑣2 𝑐2⁄ )
 ,     𝑦 =  𝑦’, 𝑧 = 𝑧’  

 

𝑡 =
𝑡’ + 𝑥’(𝑣 𝑐2⁄ )

√1 − (𝑣2 𝑐2⁄ )
 

  

kontrakcia dĺžok  = ’√1 − (𝑣2 𝑐2⁄ ) 
  

dilatácia času ∆𝑡’ =
∆𝑡

√1 − (𝑣2 𝑐2⁄ )
 

  

transformácia rýchlosti 

𝑢’𝑥 =
𝑢𝑥 − 𝑣   

(1 −
𝑢𝑥𝑣
𝑐2
)
       𝑢𝑥 =

𝑢’𝑥 + 𝑣   

(1 −
𝑢’𝑥𝑣
𝑐2
)
 

𝑢’𝑦 = 𝑢𝑦√1 − (𝑣
2 𝑐2⁄ )    

 

𝑢’𝑧 = 𝑢𝑧√1 − (𝑣
2 𝑐2⁄ ) 

  

štvorvektor polohy 𝑥1  =  𝑥 ,   𝑥2  =  𝑦 ,   𝑥3  =  𝑧,   𝑥4 =  𝑖𝑐𝑡 
  

transformačné vzťahy pre 

štvorvektory    S   S’ 

𝑥’1 =  𝛽 (𝑥1 + 𝑖
𝑣

𝑐
𝑥4),    𝑥’2 = 𝑥2 ,    𝑥’3 = 𝑥3 , 

 

𝑥’4 = 𝛽 (𝑥4 − 𝑖
𝑣

𝑐
𝑥1) 

  

štvorvektor rýchlosti 
𝑢1 = 𝛽𝑢𝑥 ,   𝑢2 = 𝛽𝑢𝑦 ,   𝑢3 =  𝛽𝑢𝑧 ,   𝑢4 =  𝛽𝑖𝑐 
 

𝛽 = 1/√1 − (𝑣 𝑐⁄ )2 
  

závislosť hmotnosti od rýchlosti   𝑚 =
𝑚𝑜

√1 − (𝑣2 𝑐2⁄ )
= 𝛽𝑚𝑜 

  

Ekvivalencia hmotnosti a energie 𝐸 = 𝑚𝑐2 
  

Kinetická energia – relativistický 

vzorec 
𝐸𝑘 = 𝑚𝑐

2 −𝑚𝑜𝑐
2 



 45 

  

Súvislosť energie E a hybnosti p 𝐸 = √𝑚𝑜
2𝑐4 + 𝑝2𝑐2 

  

štvorvektor hybnosti 

𝑝1 = 𝑚𝑜𝑢1 ,    𝑝2 = 𝑚𝑜𝑢2 ,    𝑝3 = 𝑚𝑜𝑢3 ,      
 

𝑝4 = 𝑚𝑜𝑢4 = 𝑚𝑜𝛽𝑖𝑐 = 𝑚𝑖𝑐 = 𝑖
𝐸

𝑐
 

  

štvorvektor sily – derivácia 

hybnosti podľa vlastného času  d𝜏 
𝐹𝜶 = d𝑝𝛼/d𝜏  

  

transformácie intenzity  

elektrického poľa 

𝐸𝑥
′ = 𝐸𝑥 , 𝐸𝑦

′ =
𝐸𝑦 − 𝑣𝐵𝑧

√1 − (𝑣/𝑐)2
 ,      

𝐸𝑧
′ =

𝐸𝑧 + 𝑣𝐵𝑦

√1 − (𝑣/𝑐)2
 

  

transformácie magnetickej indukcie 

𝐵𝑥
′ = 𝐵𝑥 ,       𝐵𝑦

′ =
𝐵𝑦 +

𝑣
𝑐2
𝐸𝑧

√1 − (𝑣/𝑐)2
 ,     

𝐵𝑧
′ =

𝐵𝑧 −
𝑣
𝑐2
𝐸𝑦

√1 − (𝑣/𝑐)2
 

  

štvorvektor prúdovej hustoty 𝐽1 = 𝜌 𝑢𝑥 ,   𝐽2 = 𝜌 𝑢𝑦,    𝐽3 = 𝜌 𝑢𝑧,    𝐽4 = 𝑖 𝑐𝜌 

  

transformácia hustoty elektrického 

náboja 
𝜌′ =

𝜌

√1 − (𝑣/𝑐)2
 

  

štvorpotenciál 𝐴1 = 𝐴𝑥 ,   𝐴2 = 𝐴𝑦 ,   𝐴3 = 𝐴𝑧  ,   𝐴4 =  𝑖𝜑 
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SLOVNÍK 
  

bodová udalosť pomenovanie bodu v časopriestore, reprezentujúceho 

extrémne krátku udalosť (napr. záblesk), ktorá sa v danej inerciálnej sústave 

udiala v mieste so súradnicami 𝑥 , 𝑦 , 𝑧  a v časovom okamihu 𝑡 .   
 

časopriestor  štvorrozmerný priestor používaný v teórii relativity, ktorého 

tri rozmery zodpovedajú normálnemu priestoru a štvrtý rozmer času 𝑡. Bodu 

v časopriestore sú priradené súradnice 𝑥1 = 𝑥, 𝑥2 =  𝑦,  𝑥3 = 𝑧, 𝑥4 = 𝑖𝑐𝑡,    

kde  𝑖  je imaginárna jednotka a 𝑐 rýchlosť svetla.  
 

dilatácia času  predĺženie časového intervalu medzi dvoma  udalosťami  

z hľadiska pozorovateľa,  súvisiace s rýchlosťou jeho pohybu. Najkratší 

časový interval nameria pozorovateľ viazaný na takú inerciálnu sústavu, 

v ktorej sa pozorované udalosti udiali na tom istom mieste.  
 

Einsteinove postuláty  dva postuláty, na ktorých je vybudovaná špeciálna 

teória relativity: 

- – postulát o rovnocennosti všetkých inerciálnych vzťažných sústav (žiadna 

z nich nemôže byť uprednostnená) 

- – postulát o nezávislosti rýchlosti svetla nameranej pozorovateľom (vo 

vákuu) od jeho rýchlosti vzhľadom na zdroj svetla. 
 

ekvivalencia hmotnosti a energie  najvýznamnejší výsledok špeciálnej 

teórie relativity, vyjadrený vzťahom  𝐸 = 𝑚𝑐2 , v ktorom 𝐸 je celková 

energia častice, 𝑚 jej hmotnosť a 𝑐 rýchlosť svetla. Objektu, ktorý 

v inerciálnej sústave má hmotnosť 𝑚, súčasne prislúcha celková energia 𝐸. 
  

Galileiho princíp relativity, klasický princíp relativity  princíp, podľa 

ktorého mechanickými pokusmi uskutočňovanými v inerciálnej sústave, nie 

je možné zistiť, či sa vzťažná sústava pohybuje, alebo či je v pokoji.  
 

Galileiho transformácie  transformácie polohových súradníc medzi dvoma 

inerciálnymi vzťažnými sústavami, opierajúce sa o nezávislosť času od 

pohybu vzťažnej sústavy, tj. využívajúce absolútny čas. V prípade, že 

súradnicové osi sústav sú vzájomne rovnobežné a vzájomný pohyb sústav sa 

deje pozdĺž osí 𝑥 majú tvar:   

𝑥 = 𝑥 –  𝑣𝑡, 𝑦 =  𝑦, 𝑧 =  𝑧 ,   kde  𝑣  je vzájomná rýchlosť sústav.  

 

interval  relativisticky invariantná veličina  𝑠, zavedená vzťahom  
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    𝑠2  =   (𝑥𝐴  𝑥𝐵)
2  +   (𝑦𝐴   𝑦𝐵)

2  +  (𝑧𝐴  𝑧𝐵)
2 – 𝑐2(𝑡𝐴   𝑡𝐵)

2, v ktorom  

𝑥𝐴, 𝑦𝐴 , . .. sú súradnice jednej bodovej udalosti a  𝑥𝐵, 𝑦𝐵, . ..  sú súradnice 

druhej bodovej udalosti a 𝑐 rýchlosť svetla. Je analógiou vzdialenosti medzi 

dvoma bodmi v trojrozmernom priestore aj tým, že transformáciou do inej 

inerciálnej sústavy sa jeho hodnota nemení, tak ako sa nemení dĺžka vektora 

pri otočení súradnicovej sústavy.   
 

invariantná fyzikálna veličina (invariant)  veličina, ktorá má vo všetkých 

inerciálnych vzťažných sústavách rovnakú hodnotu, t.j. pri transformácii 

veličiny do inej sústavy sa jej hodnota nemení; takou veličinou je napríklad 

elektrický náboj. 
  

invariantnosť (kovariantnosť) fyzikálneho zákona  nemennosť formy 

zápisu zákona pri prechode do inej inerciálej vzťažnej sústavy.  
  

kontrakcia dĺžky  skrátenie rozmerov objektu z hľadiska pozorovateľa, 

závisiace od rýchlosti, ktorou sa pohybuje vzhľadom na pozorovaný objekt. 

Najväčšiu dĺžku nameria ten pozorovateľ, vzhľadom na ktorého je objekt 

v pokoji. 
  

Lorentzove transformácie  transformácie polohových súradníc a času, 

ktoré sú – na rozdiel od Galileiho transformácií – v súlade s  Einsteinovými 

postulátmi. Vyplývajú z nich dôsledky odporujúce klasickým predstavám, 

ako napr. závislosť dĺžky a časového intervalu od rýchlosti pozorovateľa, 

alebo relatívnosť súčasnosti dvoch udalostí.  
 

Michelsonov – Morleyov pokus  jeden z pokusov, ktorým sa mal zistiť 

pohyb Zeme voči éteru. Využíval Michelsonov interferometer a mal overiť 

predpokladanú odlišnosť časových intervalov potrebných na prechod svetla  

dvoma navzájom kolmými ramenami interferometra – rovnobežným so  

smerom pohybu Zeme okolo Slnka a naň kolmým. Výsledok pokusu bol 

negatívny. 
   

pokojová energia  energia častice v tej inerciálnej sústave, vzhľadom na 

ktorú sa nepohybuje. S pokojovou hmotnosťou 𝑚𝑜 súvisí vzťahom          

𝐸𝑜 = 𝑚𝑜𝑐
2, kde 𝑐 je rýchlosť svetla.  

 

pokojová hmotnosť, vlastná hmotnosť (𝑚𝑜)  hmotnosť častice v tej 

inerciálnej sústave, vzhľadom na ktorú sa nepohybuje. Častici pohybujúcej sa 

rýchlosťou  𝑢  sa prisudzuje relativistická hmotnosť:    
          

𝑚 = 𝑚o/√1 − (𝑢 𝑐⁄ )2. 

 

relativistická častica  častica, ktorá sa pohybuje rýchlosťou, ktorá je blízka 
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rýchlosti svetla. 
 

relativistická kinetická energia  rozdiel celkovej a pokojovej energie 

častice: 

 𝐸𝑘 = 𝑚𝑐
2 −𝑚𝑜𝑐

2 
 

relativistická mechanika  mechanika častíc, ktoré sa pohybujú rých-

losťami,  ktoré už nie sú zanedbateľné vzhľadom na rýchlosť svetla.  
 

relativistická rýchlosť  rýchlosť, ktorá vzhľadom na rýchlosť svetla už  nie 

je zanedbateľná; prejavujú sa pri nej relativistické efekty, ako zväčšenie 

hmotnosti častice, dilatácia času a pod. 
 

relativistické skladanie rýchlostí  skladanie, ktoré vyplýva 

z Lorentzových transformačných vzťahov, podľa ktorého veľkosť súčtu 

dvoch rýchlostí nemôže presiahnuť rýchlosť svetla ani v prípade, keby sa 

skladali dve rýchlosti blízke rýchlosti svetla. Takéto skladanie rýchlostí nie je 

v súlade s klasickým, podľa ktorého sa výsledná rýchlosť rovná súčtu dvoch 

rýchlostí  𝑣1 + 𝑣2 .   
   

relatívnosť súčasnosti udalostí  nezhoda pozorovateľov viazaných na 

rôzne inerciálne sústavy v tvrdení o súčasnosti dvoch udalostí. Udalosti, 

ktoré sa odohrali v niektorej inerciálnej sústave na dvoch rôznych miestach 

súčasne, sa z iných inerciálnych sústav ako súčasné nejavia. 
  

svetelný éter hypotetické prostredie, o ktorom sa predpokladalo, že sa ním  

šíri elektromagnetické vlnenie. Jeho existenciu sa experimentálne nepodarilo 

dokázať ( Michelsonov – Morleyov pokus). 

 

špeciálna teória relativity  teória týkajúca sa inerciálnych vzťažných 

sústav, opierajúca sa o dva postuláty – postulát rovnocennosti všetkých 

inerciálnych vzťažných sústav a postulát rovnakej rýchlosti svetla vo 

všetkých inerciálnych sústavách. Jej najvýznamnejším výsledkom je 

ekvivalencia hmotnosti 𝑚 a energie 𝐸, vyjadrená vzťahom  𝐸 =  𝑚𝑐2, kde  𝑐  

je rýchlosť svetla (vo vákuu).  
  

štvorpotenciál  štvorvektor, ktorého prvé tri súradnice súvisia s vek-

torovým potenciálom magnetického poľa a štvrtá súradnica so skalárnym 

potenciálom elektrostatického poľa.   

 

štvorvektor  súbor štyroch rovnakých fyzikálnych veličín 𝑥1, 𝑥2, 𝑥3, 𝑥4,  

(súradníc štvorvektora v časopriestore), ktoré sa do inej inerciálnej 

súradnicovej sústavy transformujú pomocou Lorentzových transformácií – 
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napr. štvorvektor polohy, štvorvektor rýchlosti, štvorvektor sily a pod. 
 

štvorvektor  hybnosti  štvorvektor, ktorého súradnice sú vytvorené 

súčinom pokojovej hmotnosti pohybujúceho sa telesa s príslušnými 

súradnicami štvorvektora rýchlosti. 
 

štvorvektor polohy  štvorvektor, ktorého súradnicami sú súradnice bodovej 

udalosti.  
  

štvorvektor rýchlosti  štvorvektor, ktorého súradnicami sú derivácie 

súradníc štvorvektora polohy podľa vlastného času.  
 

vlastná dĺžka  dĺžka predmetu určená v inerciálnej vzťažnej sústave, 

vzhľadom na ktorú je predmet v pokoji; z ľubovoľnej inej vzťažnej sústavy, 

sa tento predmet javí ako kratší; spomedzi dĺžok nameraných z rôznych 

inerciálnych sústav, je teda maximálna.  
 

vlastný čas  čas, ktorý ukazujú hodiny, ktoré sa vzhľadom na danú 

inerciálnu sústavu nepohybujú, t.j. čas, ktorý nie je importovaný z  inej 

vzťažnej sústavy. Pri pozorovaní zo vzťažných sústav, ktoré sa vzhľadom na 

hodiny pohybujú, sa hodiny oneskorujú v porovnaní s rovnakými hodinami 

umiestnenými v týchto sústavách.  
 

všeobecná teória relativity  teória rozširujúca rovnocennosť aj na 

neinerciálne vzťažné sústavy a postulujúca lokálnu nerozlíšiteľnosť 

zrýchlenia podmieného neinerciálnosťou vzťažnej sústavy od pôsobenia 

gravitačného poľa. Podľa všeobecnej teórie relativity je priestor v okolí telies 

zakrivený. Predstavuje všeobecnejšiu teóriu gravitácie než Newtonova 

gravitačná teória.   
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ÚLOHY 

 
 

Odporúčané hodnoty konštánt: 

rýchlosť svetla  𝑐 = 3 × 108m/s ,   
veľkosť náboja elektrónu aj protónu  𝑒 =  1,6 × 10−19As ,    
hmotnosť elektrónu  𝑚𝑒 = 0,91 × 10

−30kg ,  
hmotnosť protónu 𝑚𝑝 = 1,67 × 10

−27kg 

 
1.  Je v súlade s teóriou relativity predstava o guli, s polomerom r = 1 m, ktorá sa otáča 

okolo svojej osi symetrie uhlovou rýchlosťou   =  3,30 × 108rad/s ? 

Výsledok: nie je, lebo jej obvodová rýchlosť by bola väčšia než rýchlosť svetla 

 

2.  Pozorovateľ v sústave S pripísal bodovej udalosti polohové súradnice 𝑥 = 104m,   
𝑡 = 2 × 10−4s . Aké sú súradnice 𝑥’ , 𝑡’   tejto udalosti v sústave S’, ktorá sa od S 

vzďaľuje v kladnom smere osi 𝑥 rýchlosťou 𝑣 = 0,8 𝑐 ,  keď v čase  𝑡 = 𝑡’ = 0 boli 

začiatky sústav v jednom bode.  
Výsledok: 𝑥’ = −6,33 × 104m, 𝑡’ = 2,89 × 10−4s .  

 

3. V sústave S  blikli dve žiarovky, jedna v mieste 𝑥1 = 0 a čase 𝑡1 = 0, druhá 

v mieste 𝑥2 = 10
4m a čase 𝑡2 = 3 × 10

−6s .  Akou rýchlosťou 𝑣 by sa musela 

pohybovať  sústava S’, aby pozorovateľ v nej zaznamenal bliknutia ako súčasné?   

Výsledok: 𝑣 ≅ 0,09 𝑐 .  
 

4.  Častica v našej inerciálnej sústave preletela vzdialenosť 𝑑 = 1,5 × 108m za jednu 

sekundu. Koľko by sme odčítali na hodinách pohybujúcich sa spolu s časticou? 

Výsledok: ∆𝑡 = 0,866 s ,  lebo z nášho pohľadu idú jej hodiny pomalšie, takže 

ukážu menej; vzdialenosť je z pohľadu častice kratšia, takže ju prejde rýchlejšie.  

 

5.  Rýchlosť, ktorou sa v smere osí  𝑥  navzájom vzďaľujú inerciálne sústavy S a S’ je 

𝑣 = 0,6 𝑐.  Pohybujúca sa častica má v  sústave S všetky tri zložky rýchlosti rovnaké: 

𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0,2 𝑐 .  Vypočítajte veľkosť rýchlosti, aká bude nameraná v  oboch 

týchto  sústavách. Treba vziať do úvahy dve možnosti – a) keď sa častica aj sústava S’ 

vzhľadom na S pohybujú rovnakým smerom,  b) keď sa pohybujú opačnými smermi. 

Výsledok:  a) 0,535 ∙ 𝑐 ,      b)  0,763 ∙ 𝑐 
 

6. Akou rýchlosťou 𝑢 by sa museli pohybovať hodiny, aby sa vzhľadom na našu 

inerciálnu sústavu omeškali za 24 hodín o jednu sekundu? 

Výsledok: 𝑢 ≈ 1500 km/s  . 
 

7.  Častica pohybujúca sa rýchlosťou 0,99 𝑐  prebehla v detektore od svojho vzniku 

po rozpad vzdialenosť 1 cm. Aká je doba jej života vzhľadom na detektor (∆𝑡1) a aká 

v  sústave viazanej na časticu (∆𝑡2)? 

Výsledok: ∆𝑡1 = 3,367 × 10
−11s,   ∆𝑡2 = 0,475 × 10

−11s .   
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8.  Tyč, ktorá má v sústave S’ dĺžku 𝑙′, zviera s osou 𝑥′ uhol 30°; vzhľadom na sústavu 

S sa pohybuje rýchlosťou 0,8 ∙ 𝑐 . Aká je jej dĺžka 𝑙 v sústave S ? 

Výsledok:  𝑙 = 0,78 𝑙′ . 
 

9.  Elektrón preletel rýchlosťou 0,9 ∙ 𝑐  cez vákuovú trubicu dlhú 𝑙 = 2m; koľko mu 

to trvalo vzhľadom na sústavu viazanú na trubicu  (∆𝑡1)  a koľko v jeho vlastnej 

sústave (∆𝑡2)? Aká je dĺžka trubice 𝑙′ z pohľadu sústavy viazanej na elektrón?  

          Výsledok: 𝑙′ = 0,436 𝑙 = 0,872 m ;   ∆𝑡1 = 7,4 × 10
−9s , ∆𝑡2 = 3,23 × 10

−9s . 
 

10. Hodiny sa pohybovali pozdĺž osi 𝑥 sústavy S rýchlosťou  𝑣 = 0,6 ∙ 𝑐  a keď 

prelietali popri jej začiatku (𝑥1 = 0), ukazovali 𝑡1 = 0. Koľko (𝑡2)  ukazovali 

v polohe 𝑥2 = 10
6 m ? 

Výsledok: 𝑡2 = 4,44 × 10
−2s  

 

11.  Dve galaxie sa od našej vzďaľujú opačnými smermi rýchlosťami 𝑣 =  0,6 𝑐. Aké 

rýchlosti nameria pozorovateľ nachádzajúci sa v jednej z nich pre rýchlosť našej 𝑢1 
a tej druhej 𝑢2 galaxie? 

Výsledok: 𝑢1 = 0,6 𝑐 ,   𝑢2 = 0,882 𝑐   
 

12. Jedna z galaxií s priemerom 1000 ly (svetelných rokov) sa od nás vzďaľuje 

rýchlosťou 0,5 c. Koľko bude z nášho pohľadu trvať  (∆𝑡1),  pokým svetelný lúč 

preletí celý jej priemer, a koľko z hľadiska sústavy viazanej na galaxiu (∆𝑡2)?  

Výsledok: ∆𝑡1 = 0,866 × 1000 rokov, ∆𝑡2 = 1000 rokov  

 

13.  Vypočítajte rýchlosť elektrónu urýchleného napätím 𝑈 = 10 kV   podľa klasickej 

(a) aj  relativistickej (b) mechaniky. Po sformulovaní vzťahov vypočítajte v klasickom 

aj relativistickom prípade limitu pre 𝑈 → ∞ .   
Výsledok: a)  𝑣 = 5,9 × 107m/s = 0,197 ∙ c      b)  𝑣 = 0,195 ∙ c 

Pre 𝑈 → ∞ podľa klasického výpočtu limitná hodnota rýchlosti rastie nad všetky 

medze,  podľa relativistického výpočtu sa rovná rýchlosti svetla.  

 

14. Vypočítajte rýchlosť elektrónu urýchleného napätím 𝑈 = 1 MV,  a to podľa 

klasickej  (a) aj relativistickej (b) mechaniky.  

Výsledok: a)  𝑣 = 5,9 × 108m/s = 1,97 ∙ c >  c !!       b) 𝑣 = 0,916 ∙ c  
 
15.  Akým napätím 𝑈 by sa podľa klasickej fyziky urýchlil elektrón na rýchlosť svetla? Akú 

rýchlosť 𝑢 nadobudne pri takomto urýchľujúcom napätí v skutočnosti? 

Výsledok:  𝑈 = 2,56 × 105V , 𝑢 = 0,745 ∙ c   
 

16.  Koľkokrát sa zväčší pozorovaná hmotnosť elektrónu urýchleného napätím  

     a) 10 kV,   b) 1MV ?  Využite hodnoty rýchlostí z úloh 1a a 1b.  

Výsledok:  a)  1,012 – krát,      b)  2,49 - krát  

 

17. Vypočítajte rýchlosť 𝑢 protónu, ktorý v urýchľovači získal kinetickú energiu 

veľkosti 1 MeV.  Počítajte podľa klasickej (a) aj relativistickej (b) mechaniky. 

Výsledok: a)  𝑢 =  0,046 ∙ 𝑐 ,   b)  𝑢 =  0,0046 ∙ 𝑐 
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18.  Akou rýchlosťou 𝑢 sa musí pohybovať častica, aby sme namerali jej hmotnosť 

ako dvojnásobnú?  

Výsledok:  𝑢 = 𝑐 ∙ √3 2⁄ = 0,866 ∙ 𝑐 
 

19. Vyjadrite v kilowatthodinách ekvivalent energie jedného gramu hmoty !  

Výsledok: 𝐸 = 9 × 1013Ws = 2,5 × 107kWh 

 

20. Aká je veľkosť rýchlosti častice v inerciálnej sústave, vzhľadom na ktorú  má 

hmotnosť 𝑚 = 0,911 × 10−30 kg  a hybnosť  𝑝 = 1,58 × 10−22 kg ∙ m/s ? 

Výsledok: 𝑢 = 1,52 × 108m/s . 
 

21. Pri akej rýchlosti 𝑢 sa veľkosť kinetickej energie častice rovná jej pokojovej 

hmotnosti vynásobenej druhou mocninou rýchlosti svetla?  

Výsledok: 𝑢 = 𝑐 ∙ √3 2⁄ = 0,866 ∙ 𝑐 
 

22.  Na urýchlenie častice s pokojovou hmotnosťou 𝑚𝑜 = 0,91 × 10
−30kg  dodáme 

prácu 𝑊, ktorej veľkosť sa rovná jej pokojovej energii 𝑚𝑜𝑐
2. Akú bude mať kinetickú 

energiu 𝐸𝑘 a aká bude jej rýchlosť  𝑢 ? 

Výsledok:  𝐸𝑘 = 8,19 × 10
−14Ws ,   𝑢 = 0,866 ∙ 𝑐 

 

23.  Akú veľkú prácu treba vykonať na urýchlenie elektrónu z pokoja na rýchlosti  

0,5 c,   0,9 c a   0,999 c ? 

       Výsledok: 𝑚𝑜𝑐
2 ∙ 0,15,   𝑚𝑜𝑐

2 ∙ 1,29,   𝑚𝑜𝑐
2 ∙ 21,4  ;    𝑚𝑜𝑐

2 = 8,19 × 10−14Ws  
 
24.  Porovnajte, akú veľkú prácu 𝐴 treba dodať na urýchlenie elektrónu  a) z 0,1 𝑐  na 0,2 𝑐         
b)  z 0,8 𝑐 na 0,9 c ? 

Výsledok:  𝑊0,2 −𝑊0,1 = 0,015 𝑚𝑜𝑐
2,      𝑊0,9 −𝑊0,8 = 0,613 𝑚𝑜𝑐

2    
 

25. Kvazary (jadrá aktívnych galaxií na začiatku ich vývoja) vyžarujú energiu 

výkonom cca 𝑃 = 1041W .  Koľko hmotnosti ubudne z kvazaru za jednu sekundu? 

Výsledok: ∆𝑚/∆𝑡 ≅ 1024kg/s 
 

 

 

Použité pramene 
 

Beiser A.:   Úvod do moderní fyziky, Academia, Praha 1975 

Born M.: Einsteins theory of relativity,  Dover Publications, New York 1962 

Einstein A.:  The Meaning of Relativity, Princeton 1953 

Halliday D.,  Resnick R.,  Walker J.:  Fyzika, VUTIM Brno 2007 

Horák Z., Krupka F.: Fyzika, SNTL Alfa, Praha 1976 

Saveljev I. V.: Kurs obšej fiziki, tom 1., Nauka, Moskva 1977 

 

 

  


	Ivan  Červeň
	FYZIKA  PO  KAPITOLÁCH
	Teória relativity
	Slovenská technická univerzita v Bratislave



	Táto kapitola nebola súčasťou prvého vydania  súboru Fyzika po kapitolách z roku 2007
	OBSAH

	Potrebné vedomosti

