Metódy diagnostiky materiálov Marcel MiGLiERiNi

10. Difrakcia röntgenového žiarenia

- charakteristické žiarenie
- princíp metódy
- experimentálna technika

Difrakcia röntgenového žiarenia

- objavené W. C. Röntgenom v r. 1895
- difrakciu röntgenového žiarenia (XRD) objavili William Henry Bragg a William Lawrence Bragg v r. 1912

Vlastnosti rtg. žiarenia

- krátka vlnová dĺžka (10⁻⁸ -10⁻¹² m)
- výpočet energie $E = hv = hc/\lambda$
 - o rtg. fotón s vlnovou dĺžkou 1 Å má energiu 12.5 keV

Produkcia rtg. žiarenia

Rtg. žiarenie

Parametre rtg. žiarenia

Anode	(kV)	Wavelength, λ [Angström]	Kß-Filter
		Κα1: 0,70926	Zr
Мо	20,0	Κα2: 0,71354	0,08mm
		Κβ1: 0,63225	
Cu	9,0	Kα1: 1,5405	Ni 0,015mm
		Κα2: 1,54434	
		Κβ1: 1,39217	
Со	7,7	Κα1: 1,78890	Fe 0,012mm
		Κα2: 1,79279	
		Kβ1 : 1,62073	
Fe	7,1	Κα1: 1,93597	Mn 0.011mm
		Κα2: 1,93991	
		Κβ1 : 1,75654	0,0111111

Beta filter

- materiál s absorpčnou hranou medzi K_{α} a K_{β} vlnovými dĺžkami
 - napr. Cu K_α = 1.541 Å, Cu K_β = 1.392 Å
 - o absorpčná hrana Ni = 1.488 Å
 - Ni absorpcia Cu žiarenia
 - 50 % Cu K_α
 - 99 % Cu K_{β}

Čo je difrakcia?

- vlna interaguje s:
- jednotlivou časticou
 - častica rozptyľuje žiarenie rovnomerne do všetkých smerov
- kryštalický materiál
 - rozptýlené žiarenie sa môže konštruktívne zosilňovať v niektorých smeroch a tak poskytnúť difrakčný lúč

Interferencia

- konštruktívna a deštruktívna interferencia
- konštruktívna interferencia
 - ak je rozdiel dráh rozptýlených vĺn rovný celočíselnému násobku vlnovej dĺžky

Millerove indexy

Braggov zákon

podmienka konštruktívnej interferencie

- o d medzirovinná vzdialenosť
- λ vlnová dĺžka žiarenia
- n celé číslo (rád difrakcie)

 $n\lambda = 2d.sin(\theta)$

Konštruktívna interferencia

lúč 2 lúč 1 $n.\lambda = AB + BC$ AB = BCθ Α $n\lambda = 2AB$ d $\sin\theta = AB/d$ В Z $AB = d.sin\theta$ d θ $n\lambda = 2d.sin\theta$ Α В

2D recipročná mriežka

• translačné vektory 2D recipročnej mriežky:
$$\mathbf{g}_{1} = 2\pi \frac{\mathbf{a}_{2} \times \mathbf{n}}{|\mathbf{a}_{1} \times \mathbf{a}_{2}|} \quad \mathbf{g}_{2} = 2\pi \frac{\mathbf{a}_{1} \times \mathbf{n}}{|\mathbf{a}_{1} \times \mathbf{a}_{2}|} \quad \mathbf{G}_{\mathsf{hk}} = \mathsf{h.g}_{1} + \mathsf{k.g}_{2}$$
• n - jednotkový vektor kolmý k povrchu
$$\mathbf{a}_{i} \cdot \mathbf{g}_{j} = 2\pi \delta_{ij} \quad |\mathbf{g}_{i}| = \frac{2\pi}{\mathbf{a}_{i} \sin \angle(\mathbf{g}_{i}, \mathbf{a}_{i})} = \frac{2\pi}{\mathbf{d}} \quad \mathsf{h,k} - \mathsf{Millerove indexy}$$

Reálny priestor: Jednotkové vektory: a,b d-priestor smer [10] d_{10} a d_{01} [01] b Recipročný priestor: Jednotkové vektory: a*,b* veľkosť smer a* 1/d₁₀ $\perp b$ b* 1/d₀₁ ⊥a

Pozn.: Každý bod recipročného priestoru reprezentuje sadu rovín.

Vzťah medzi d a mriežkovými parametrami

- $1/d^2 = (h^2 + k^2)/a^2 + l^2/c^2$
 - o vlnová dĺžka je známa
 - ο θ je polovica hodnoty pozície čiary
 - o d je možné vypočítať
- h, k, l Millerove indexy

 $n\lambda = 2d.sin(\theta)$

a, c – mriežkové parametre elementárnej bunky

- ak poznáme a, c, vieme vypočítať pozíciu difrakčnej čiary
- ak poznáme pozíciu čiary, vieme vypočítať mriežkový parameter

Difraktogram

Difraktogram

Experimentálne zariadenie

- vzorka a detektor sú vzájomne zviazané
 - o vzorka sa pootočí o uhol θ
 - o detektor sa pootočí o uhol 2θ

Geometria Bragg-Brentano

Difraktometer

Rtg. trubica

Rtg. trubica

Techniky difrakcie

X-ray powder diffraction (XRPD)

- o určenie fázového zloženia (kvalitatívna, kvantitatívna analýza)
- o kryštálová štruktúra, mriežkové parametre
- o priemerná veľkosť kryštalických zŕn, textúra, napätia
- Grazing Incidence Angle Diffraction Glancing Angle X-ray Diffraction (GAXRD)
 - o malý uhol dopadajúceho žiarenia (< 5°)
 - o skenovanie len povrchových vrstiev vzorky
 - o tie isté analýzy ako u XRPD hĺbková závislosť
 - o orientácia tenkých filmov na povrchu substrátu
 - o epitaxia, textúra

Techniky difrakcie

- Small Angle X-ray Scattering (SAXS)
 - vysokokolimovaný lúč, veľká vzdialenosť medzi vzorkou a detektorom
 - o možnosť rozlíšiť veľkosti asi 200 nm
 - o stanovenie kryštalinity polymérov
 - o štruktúrne informácie na nm a submikrónovej oblasti

XRD

25

In-situ DSR

BESSY KMC-2:

- o energia 7 keV (0.178 nm), rozptylová geometria
- o lineárny ohrev 10K/min, rozsah teplôt 300 1080 K
- o čas zberu údajov 10 s, 2D detekcia

• $Fe_{91-x}Mo_8Cu_1B_x$: x = 17

Soft X-ray Resonant Inelastic X-ray

Scattering Spectrometer

