Experimentálne metódy Marcel MiGLiERiNi

6. Mössbauerova spektrometria 2

- hyperjemné interakcie
 - o elektrická monopólová
 - o elektrická kvadrupólová
 - o magnetická dipólová
- kalibrácia spektra
- vybrané aplikácie

Typy spektier

nehrdzavejúca oceľ
 Fe55%-Cr25%-Ni20%

sodium nitroprusid
 Na₂[Fe(CN)₅NO].2H₂O

 kovové železo bcc-Fe

Magnetické oxidy

Fe-obsahujúce minerály

velocity (mm/s)

Vyhodnotenie spektra

Spektrálne parametre

- izomérny posun IS (δ)
- kvadrupólové štiepenie/posun QS (Δ)/ ϵ
- hyperjemné magneticke pole D_{hf} intenzita (plocha), šírka čiary, efekt: $\mathcal{E} = \frac{N_{\infty} N_{min}}{N_{\infty}}.100$ (%)

Hyperjemné interakcie

Elektrická monopólová interakcia

interakcia rozloženia náboja jadra s hustotou elektrónov v priestore jadra (v zdroji a v absorbátore) o hustota s-elektrónov v jadre

Izomérny posun - δ

- určený s ohľadom na referenčný materiál (bcc-Fe)
- informácia o:
 - o charaktere väzieb
 - spinovom stave (HS, LS)
 - oxidačnom stave
 - o elektronegativite ligandov

Elektrická kvadrupólová interakcia

- interakcia medzi jadrovým kvadrupólovým momentom a nehomogenitami elektrického poľa
- a nehomogenitami elektrického poľa kvadrupólové štiepenie: $\Delta = \frac{1}{2} \cdot eV_{zz} \left(1 + \frac{1}{3}\eta^2\right)^{\frac{1}{2}} \cdot Q \qquad \begin{array}{l} \eta = \frac{V_{XX} V_{YY}}{V_{ZZ}} \\ 0 \le \eta \le 1 \\ \eta \text{parameter asymetrie} \end{array}$

- o jadrová podmienka: elektrický kvadrupólový moment eQ ≠ 0 (I > 1/2) \circ elektrónová podmienka: EFG ≠ 0
 - príspevok mriežky
 - príspevok od valenčných elektrónov

Kvadrupólové štiepenie – Δ

informácia o:

- o lokálnej (molekulárnej alebo kryštálovej) symetrii
- oxidačnom stave
- o charaktere väzieb
- spinovom stave (HS, LS)

Magnetická dipólová interakcia

 interakcia jadrového magnetického momentu s vnútorným alebo aplikovaným magnetickým poľom

magnetická energia:
$$E_{m_I} = -\frac{\mu H m_I}{I} = -g_N \beta_N H m_I$$

magnetické štiepenie jadrových hladín (Zeemanov jav):

 jadrová podmienka: magnetický dipólový moment μ ≠ 0 (I > 0)
 elektrónová podmienka: H ≠ 0
 výberové pravidlá: ΔI = ±1, Δm_I = 0, ± 1

 g_N – jadrový Landého faktor β_N – jadrový Bohrov magnetón I – jadrový spin m_I – magnetické kvantové číslo μ – jadrový dipólový moment H – intenzita magnetického poľa

Hyperjemné pole

pôvod indukcie hyperjemného poľa

- orbitálny člen: pohyb elektrónov (žiadny príspevok z úplne zaplnených a polozaplnených sfér)
- o dipólový člen: magnetický dipólový moment
- Fermiho kontaktná interakcia: príspevok s-elektrónov v priestore jadra
- príspevok vodivostných elektrónov prostredníctvom výmennej interakcie

$$B_{hf} = B_{orb} + B_{dip} + B_{kon} + B_{vod}$$

 $B_{ef} = B_{hf} + B_{ext}$

Intenzity čiar sextetu

Clebsh-Gordanove koeficienty

prechod	Δm_l	uhlová závislosť
± 3/2→±1/2	± 1	$3/4(1 + \cos^2\Theta)$
± 1/2→±1/2	0	$\sin^2 \Theta$
∓ 1/2→±1/2	± 1	$1/4(1 + \cos^2 \Theta)$

 $I_1:I_2:I_3:I_4:I_5:I_6 = 3:b:1:1:b:3$

Kombinované hyperjemné interakcie

- magnetické dipólové a elektrické kvadrupólové interakcie pôsobia súčasne
 - o treba použiť poruchový počet
 - o magnetická interakcia je omnoho silnejšia eigenvalues:

$$E_{m_{I}} = -g_{N}\beta_{N}Hm_{I} + (-1)^{|m_{I}|+1/2} \cdot \frac{1}{4}eQV_{zz} \cdot \frac{1}{2} (3\cos^{2}\theta - 1 + \eta\sin^{2}\theta\cos 2\phi)$$

o elektrická interakcia – z poruchovej teórie:

$$E_{q} = \frac{1}{8} e Q V_{zz} \cdot \left(3\cos^{2} \vartheta - 1 + \eta \sin^{2} \vartheta \cos 2\phi \right)$$

 \mathcal{G} , ϕ – uhly medzi smerom magnetického poľa *H* a hlavnou osou EFG tenzora V_{zz}

 ϵ – kvadrupólový posun

Skladanie spektra

Measurement: -R664

	100						500
			. 200	300		400	0 00
					•	_	
	:						
383, 1477040					••	Zero <u>E</u> dit Logfile	Continut STOP Distr <u>.</u>
		ğ					
	sign (veloc	of [ity→ -		+ +	: -	hannel number	15

Kalibrácia spektrometra

zdroj žiarenia: ⁵⁷Co v matrici Rh, Pd, Cu, Cr

- izomérny posun ovplyvnený chemickým okolím žiariča
- nastavenie rýchlosti
 - o kalibrácia rýchlostnej stupnice
 - kalibračné absorbátory
 - bcc-Fe
 - α -Fe₂O₃ (hematit)
 - sodium nitroprusid
 - o nastavenie nulovej rýchlosti

Au 0.64 Ag 0.499 Pt 0.344 Cu 0.227 Pd 0.170 Rh 0.109 Mo 0.047 Nb 0.001 Fe 0.0 Cr -0.147 SNP -0.257

Isomer Shift

(mm/s)

Kalibrácia rýchlosti laserom

- Michelsonov interferometer
 - $\circ \Delta S = 2.(L_1 L_2)$

Uplatnenie Mössbauerovej spektrometrie

- štruktúrne informácie (koordinácia, geometria, stochiometria, substitúcia, nekryštalické systémy - SRO)
- identifikácia fáz (magnetické vs. nemagnetické fázy)
- Fe^{2+}/Fe^{3+}
- energetické rozlíšenie 1 : 10¹³ (atómové spektrá 1 : 10⁸)
- teplotné a tlakové štúdie

dynamické procesy: fázové transformácie, oxidácia, difúzia, atď.

statické štúdie

Extraterestriálne aplikácie

- misie na Mars
 - Mars-Express Beagle 2, 2.6.2003, Bajkonur
 - Mars Exploration Rover, 10.6.2003 MER-A Spirit
 - MER-B Opportunity, 7.7.2003, Cape Canaveral, Florida

MIMOS II

MIniaturized MOSsbauer Spectrometer – MIMOS II
 váha < 500g, spotreba energie < 3W, doba použiteľnosti ~6 mesiacov

Kredit: NASA/JPL/Cornell/USGS/University of Mainz

MER Spirit

Vybrané aplikácie

výber podľa abecedy

pozn: Uvedené sú len aplikácie, ktoré boli realizované na ÚJFI (KJFT) autorom.

Archeológia

Miglierini M et al.: Hyperfine Int. 166 (2005) 651

Biológia

Miglierini M et al.: Acta Phys.Pol. A 126 (2014) 240

CEMS/CXMS

Miglierini M et al.: Hyperfine Int. 205 (2012) 125

x = 0

Distribúcia hyperjemných polí

Miglierini M, Grenèche J-M: Hyperfine Interact 113 (1998) 375

Environmentálne aplikácie

E

monitorovanie kvality ovzdušia v urbanistickej zástavbe
 povrchová expozícia Fe-fólie (21 dní)

Miglierini M: Slov. Geolog. Mag. 9 (2003) 115

Fázová transformácia

Geológia

- úložisko rádioaktívneho odpadu
- pyritická oxidácia → stabilita bentonitovej baríery
- Fe²⁺ ↓↑ počet suchých-mokrých cyklov

Osacký M, Šucha V, Miglierini M, Madejová J: *Clay Minerals* **47** (2012) 465

Hyperjemné polia

Miglierini M, Grenèche J-M, Idzikowski B: Mater Sci Eng A 304-306 (2001) 937

Chémia

- tourmalíny s obsahom Fe
 - o optické vlastnosti
 - žíhanie 8 hodín v oxidačnej atmosfére pri znázornených teplotách
 - Fe^{2+} → Fe^{3+} @ 700 °C

0

Bačík P, Ozdín D, Miglierini M et al.: Phys. Chem. Minerals 38 (2011) 599

5

10

Iónová implantácia

Jadrový reaktor

parogenerátor jadrovej elektrárne

Lipka J, Blažek J, Majerský D, Miglierini M et al.: Hyperfine Int. 57 (1990) 1969

Kinetika kryštalizácie

A: $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ B: $Fe_{70.5}Cu_1Nb_{4.5}Si_{16}B_8$ C: $Fe_{72}Cu_1Nb_{4.5}Si_{13.5}B_9$

Miglierini M: J. Phys. Condens. Matter 6 (1994) 1431

Laserové ožiarenie

$Fe_{76}Mo_8Cu_1B_{15}$

- excimerový laser
- N₂ atmosféra

žíhané @ 600 °C/1h

Miglierini M et al.: J. Phys.: Condens. Matter 13 (2001) 10359

Metalurgia

Miglierini M et al.: Hyperfine Int. 190 (2009) 51

Neutrónové ožiarenie

Oxidácia povrchu

Počiatok kryštalizácie

transmisná geometria

experiment CEMS

Miglierini M et al.: Czech. J. Phys. 51 (2001) 677

Quázikryštály

Al₄₀Cu_{9.7}Ge₂₅Mn₂₅⁵⁷Fe_{0.3}

40

Radiačné poškodenie

R

valcová strana

vzdušná strana

Miglierini M, Hasiak M: Phys. Stat. Sol. A 213 (2016) 1138

Synchrotrónové žiarenie

Miglierini M et al.: Phys. Rev. B 86 (2012) 020202(R)

Teplotné merania

Usporiadanosť vs. neusporiadanosť

Vysokoteplotné merania

- Curieho teplota kryštalickej fázy
- nc-Fe₉₀Zr₇B₃

Miglierini M: J. Optoel. Adv. Mater. 8 (2006) 1651

eXotické aplikácie

Eisen in französischem Rotwein

Zliatiny so železom

Grgač P, Miglierini M et al.: Mater. Sci. Eng. A 449-451 (2007) 1029

Zhrnutie

Mössbauerova spektrometria:

- 🛛 výhody 🕲
 - nedeštruktívna technika
 - vysoký diagnostický potenciál
 - usporiadaná vs. neusporiadaná štruktúra
 - extrémna citlivosť
 - široký rozsah aplikácií
- 🗖 nevýhody 😕
 - používajú sa rádionuklidy
 - polčas rozpadu
 - bezpečnosť
 - autorizácia
 - vzorky v tuhom stave

Kde, kedy a aké usporiadanie identifikujeme.