Experimentálne metódy Marcel MiGLiERiNi

10. RBS

- princípy metódy
- NRBS
- kanálovanie
- experimentálne zariadenie
- príklady aplikácií

Analýzy iónovými zväzkami

- Rutherford Backscattering Spectroscopy (RBS)
- Nuclear Reaction Analysis (NRA)
- Particle Induced X-ray Emission (PIXE)
- Particle Induced γ-ray Emission (PIGE)

- Elastic Recoil
 Detection
 Analysis (ERDA)
- Ion Beam Induced Current (IBIC)
- Scanning Transmission Ion Microscopy (STIM)
- Secondary Ion Mass Spectroscopy (SIMS)

RBS = Rutherford Backscattering Spectroscopy

- zrážky medzi atómovými jadrami → pružné zrážky
- meranie počtu a energie odrazených iónov dopadajúceho lúča
- výhody:
 - o vysoká citlivosť na ťažké prvky v ľahkej matrici
 - o jednoduché umiestnenie vzorky na vzduchu
 - kvalitatívna presnosť < 1 %
 - hĺbkové rozlíšenie < 5 nm so Si(Li)
 - o kanálovanie
- nevýhody:
 - o necitlivý na ľahké prvky v ťažkej matrici
 - o implantovanie iónov do analyzovaného materiálu
 - potrebný urýchľovač

Lord Ernest Rutherford 1871-1937

Princíp metódy

- pružný rozptyl dopadajúceho vysoko pohyblivého iónu monoenergetického lúča na nepohyblivom jadre
- bez straty energie na zrážku

Energia rozptýlenej častice pod daným uhlom

1. proces:

interakcia medzi dvoma jadrami:

o spätný rozptyl dopadajúceho iónu

o elastický Coulombov rozptyl

meriame:
$$E_1 = K \cdot E_0; 0 < K < 1$$

$$K = \left[\frac{(M_2^2 - M_1^2 \sin^2 \theta)^{\frac{1}{2}} + M_1 \cos \theta}{M_1 + M_2}\right]^2$$

• K = kinematický faktor: pričom K = $f(M_1, M_2)\theta)$ identifikácia M₂ (hmotnostná spektrometria)

Energia rozptýlenej častice pod daným uhlom

- 2. proces:
- strata energie v dôsledku interakcie s elektrónmi (elektrónový rozptyl):

o množstvo úbytku energie závisí na brzdnom účinku látky

$$S(E) = -\frac{dE}{dx}$$
 [eV/(at./cm²)]

• stanovený experimentálne

Hmotnostné rozlíšenie

$$\Delta K = \Delta E_1 / E_0$$
$$\Delta K_1 >> \Delta K_2 \implies \Delta E_{1(1)} >> \Delta E_{1(2)}$$

detektor rozlíši 2 ľahké prvky s $\Delta M = 1$ napr. ¹⁸O – ¹⁹F, ¹³C – ¹⁴N

ale je ťažké rozlíšiť ťažké prvky napr. ²⁰⁸Pb od ¹⁹⁷Au

zlepšenie rozlišovacej schopnosti zvýšením M₁, t.j. typom bombardujúcich častíc

Citlivosť metódy

$$\frac{d\sigma}{d\Omega} = \left[\frac{Z_1 Z_2 e^2}{4E}\right]^2 \frac{4\left[(M_2^2 - M_1^2 \sin^2 \theta)^{1/2} + M_2 \cos \theta\right]^2}{M_2 \sin^4 \theta (M_2^2 - M_1^2 \sin^2 \theta)^{1/2}}$$
$$\frac{d\sigma}{d\Omega} \qquad \text{je úmerný:} \qquad Z_1^2, Z_2^2, \frac{1}{E^2}$$

Lepšia citlivosť na ťažké prvky pri dopade α častíc v porovnaní s protónmi nízkych energií

dQ: počet odrazených častíc pod priestorovým uhlom Ω

$$dQ = \frac{d\sigma}{d\Omega} d\Omega NtQ \leftarrow \text{počet dopadajúcich častíc} \qquad \qquad \Delta Q = NtQ\sigma\Delta\Omega$$

$$dQ = \frac{d\sigma}{d\Omega} d\Omega NtQ \leftarrow \text{počet dopadajúcich častíc} \qquad \qquad \Delta Q = NtQ\sigma\Delta\Omega$$

$$d\Omega = 10^{-2} - 10^{-3} \text{ sr}$$

$$t : g \text{ cm}^{-2} (hrúbka vrstvy)$$

Diferenciálny účinný prierez

pravdepodobnosť, že sa daný jav udeje

Príklad

RBS spektrum veľmi tenkých Au, Ag, Cu vrstiev

He 2.5 MeV ∢

Čo je to povrch?

povrch (~1 nm) 3 atómové vrstvy

ultra-tenký film (1 - 10 nm) 3 - 30 atómových vrstiev

> tenký film (10 nm - 1 μm) 30 - 300 atómových vrstiev

← objem

Kvalitatívna analýza I.

$$M_{A} > M_{B} \implies K_{A} > K_{B} \implies E_{A} > E_{B}$$

$$2 \text{ prvky A a B (50\% \text{ at., 50\% at.)} \qquad Z_{A} > Z_{B} \implies \left(\frac{d\sigma}{d\Omega}\right)_{A} > \left(\frac{d\sigma}{d\Omega}\right)_{B} \implies A_{A} > A_{B}$$

1. ultra tenká vrstva (niekoľko atomárnych vrstiev)

2. tenká vrstva (niekoľko stovák až tisícok atomárnych vrstiev)

Kvalitatívna analýza II.

počet He 3. hrubá vrstva В He, E_0 Α В θ $K_B E_0$ K_AE₀ detektor počet He A 4. pokrytie povrchu B (a) $M_{c} > M_{A}$ A He, E_0 $K_BE_0 K_AE_0$ С počet He В detektor (b) $M_{c} < M_{B}$ Α В С

Е

Е

K_AE_{0 E}

 K_BE_0

Kvalitatívna analýza III.

14

Kvalitatívna analýza IV.

Kvantitatívna analýza

- detektor poskytuje elektronický pulz, ktorého výška je úmerná energii častice
- pulzy sú priradené podľa svojej výšky do príslušných kanálov

jeden kanál = interval energie c = keV/kanál (šírka energie na kanál)

Hrubá vzorka, 1 prvok

strata energie od hĺbky:

$$E = E_0 - \frac{x}{\cos \theta_1} \left(\frac{dE}{dx}\right)_i$$
$$E_1 = KE - \frac{x}{\cos \theta_2} \left(\frac{dE}{dx}\right)_b$$
$$\Delta E = KE_0 - E_1$$
$$\Delta E = KE_0 - K(E_0 - \frac{x}{\cos \theta_1} \left(\frac{dE}{dx}\right)_i\right) + \frac{x}{\cos \theta_2} \left(\frac{dE}{dx}\right)_b$$
$$\Delta E = \left[\left(\frac{K}{\cos \theta_1} \left(\frac{dE}{dx}\right)_i + \frac{1}{\cos \theta_2} \left(\frac{dE}{dx}\right)_b\right)\right] x$$
[S] = brzdiaci účinný prierez

i = dopadajúci (incident) b = odrazený (backscattered)

Intenzita (výška) spektra

v hĺbke x:
$$H_i = \frac{NQ\sigma(E_i)\Omega}{\cos\theta_1} \frac{c}{[S(E_i)]} \frac{S(KE_i)}{S(E_{1,i})}$$

c= šírka energie na kanál (MeV) N = počet jadier (at cm⁻²) Ω = priestorový uhol (sr) Q= počet dopadajúcich častíc σ = účinný prierez (cm²) [S] = brzdiaci účinný prierez (MeV g⁻¹ cm²)

Hrubá vzorka, 2 prvky X,Y

strata energie od hĺbky:

$$[S]_X^{XY} = \left(\frac{K_X}{\cos\theta_1}S_i^{XY} + \frac{1}{\cos\theta_2}S_{b,X}^{XY}\right)$$
$$[S]_Y^{XY} = \left(\frac{K_Y}{\cos\theta_1}S_i^{XY} + \frac{1}{\cos\theta_2}S_{b,Y}^{XY}\right)$$

difúzia v hĺbke x:

$$\Delta E_X = K_X E_0 - E_{1,X}$$
$$E = E_0 - \frac{x}{\cos \theta_1} S_i^{XY}$$
$$E_{1,X} = K_X E - \frac{x}{\cos \theta_2} S_{b,X}^{XY}$$

19

Výška spektra

na povrchu:

$$H_{0,X} = \frac{N_X^{XY} c Q \sigma_X(E_0) \Omega}{\cos \theta_1 [S_0]_X^{XY}}$$

$$\longrightarrow \frac{H_{0,X}}{H_{0,Y}} = \frac{N_X^{XY} \sigma_X(E_0) [S_0]_Y^{XY}}{N_Y^{XY} \sigma_Y(E_0) [S_0]_X^{XY}}$$

Tenká vrstva, 1 prvok

Tenká vrstva, 2 prvky X,Y

Hĺbkové rozlíšenie RBS

hĺbkové rozlíšenie Δx

$$\Delta \mathbf{x} = \frac{\Delta \mathbf{E}}{[\mathbf{S}]}$$

• ΔE závisí na:

- $\circ~$ energetickom rozlíšení detektora, $\Delta E_{\rm D}$
- $\,\circ\,$ energetickom rozptyle urýchleného lúča, ΔE_{B}
- o energetický rozptyl lúča smerom k a od terčíka, $\sigma_{str}(x)$
- $\,\circ\,$ nerovností povrchu w_{surf} a medzivrstvy w_{int}

$$\Delta x = \left[\frac{\left\{\Delta E_{D}^{2} + \Delta E_{B}^{2} + \sigma_{Str}^{2}(x)\right\}}{[S]^{2}} + w_{surf}^{2} + w_{int}^{2}\right]^{1/2}$$

NRBS

- Non-Rutherford Backscattering Spectrometry
 - o čistá coulombovská interakcia len medzi netienenými jadrami
 - blízkosť jadier spôsobuje odchýlky od účinného prierezu Rutherfordovho rozptylu, ktorý môže byť veľmi vysoký pre častice a jadrá s malým Z (ľahké jadrá) pri rezonančnej energii
 - o identifikácia O, C, N, Si

$$E_{\alpha} = 3.045 \text{ MeV} \rightarrow {}^{16}\text{O} (\alpha, \alpha') {}^{16}\text{O}$$

Ďalšie vlastnosti

- identifikácia a lokalizácia rôznych prvkov v matrici
- typické analytické hĺbky: niekoľko stovák nm
- hĺbkové rozlíšenie
 - o asi 12 nm pre RBS
 - o pre NRA závisí od reakcie
- nedeštruktívne techniky
- laterálne rozlíšenie asi 1 mm², s mikrolúčom niekoľko μm²
- kvantitatívna analýza nezávisí na chemickom stave prvkov
- lokalizácia nečistôt v kryštále → kanálovanie pomocou RBS
- jedinečnosť NRA
 - o špecifická pre daný izotop
 - o izotopické stopovanie

Kanálovanie

špeciálny mód RBS

- o vyšetrovaná vzorka je monokryštál alebo usporiadaná vrstva
- o orientácia lúča pozdĺž hlavnej kryštalografickej osi kryštálu
 - → pokles intenzity detegovaného žiarenia
 - tienenie coulombovského rozptylového potenciálu radou atómov v kryštále

Princíp kanálovania

Identifikácia pozícií

Channel cross section

Aplikácie RBS

- umenie a archeológia
- materiálový výskum
- biológia, biomedicína
- geológia (inklúzie minerálov)

Umenie

Archeometria

Archeometry Center, Liège University, Belgicko

Archeometria

vzorka: CuSn10 560°C

