Sensors for orientation and control of satellites and space probes

Ing. Ondrej Závodský
GOSPACE s.r.o.

Space for Education, Education for Space
ESA Contract No. 4000117400/16NL/NDe
1) How to determine the orientation of the satellite?
 – Sensors
 – Calibration
 – Sensor fusion

2) How to control the orientation of the satellite?
 – Passive systems
 – Magnetorquers
 • B-dot algorithm
 • Testing with 3D helmholtz coils system
 – Reaction wheel
1) Attitude Determination

• Gyroscope
 – Measure angular velocity
 – Types
 • MEMS vibrating structure
 • Optical gyroscopes

\[\theta(t) = \int_{0}^{t} \omega(t) \, dt \approx \sum_{0}^{t} \omega(t) T_s \]
1) Attitude Determination

- MEMS vibrating gyroscope
 - Uses Coriolis force
 - Hurricanes ✔
 - Toilets ❌

\[\mathbf{a_{cor}} = 2 \mathbf{V} \times \mathbf{\Omega} \]
1) Attitude Determination

- MEMS vibrating gyroscope
 - *Uses Coriolis force*
1) Attitude Determination

- Optical gyroscope
 - Developed soon after the discovery of laser technology
 - Operate under the principle of the Sagnac effect
1) Attitude Determination

- Optical gyroscope
 - Polarised light interference
1) Attitude Determination

• Gyroscope main parameters
 – Sensitivity [deg/s]
 – Noise [deg/s]
 – Bandwidth [Hz]
 – Full-scale [deg/s]
 – Zero drift and temperature drift [deg/s]
 – Sensitivity drift
 – Cross-axis
1) Attitude Determination

- Magnetometer
 - Measure three-axis magnetic field
 - Possible detect position relative to the Earth
 - IGRF or WMM2015 model
- Types
 - Fluxgate
 - AMR
 - Hall-effect
1) Attitude Determination

- Fluxgate magnetometer
 - Uses saturation of high permeable core
 - Very high sensitivity (up to 1nT)

\[U_i = \frac{d\Phi}{dt} \]
1) Attitude Determination

- Fluxgate magnetometer
1) Attitude Determination

- Fluxgate magnetometer
1) Attitude Determination

Sensors for orientation and control of satellites and space probes
Space for Education, Education for Space
1) Attitude Determination

- **AMR (Anisotropic Magnetoresistance)**
 - Changes the value of its electrical resistance in an externally-applied magnetic field.
1) Attitude Determination

- AMR (Anisotropic Magnetoresistance)
1) Attitude Determination

- AMR (Anisotropic Magnetoresistance)
 - Null-field offsets
1) Attitude Determination

- AMR (Anisotropic Magnetoresistance)
 - Temperature drift
1) Attitude Determination

- AMR (Anisotropic Magnetoresistance)
 - Set/reset procedure
 - Reduces null-field offset and temperature drift offset
1) Attitude Determination

- Magnetometer main parameters
 - Sensitivity [μT or Gauss] (1 gauss = 100 μT)
 - Noise [μT]
 - Bandwidth [Hz]
 - Full-scale [μT]
 - Zero drift [μT]
 - Temperature drift [μT/°C]
 - Sensitivity drift [%/°C]
 - Cross-axis [%]
1) Attitude Determination

- Earth sensor
 - 16x4 px thermopile
 - Detects earth-space horizon based on the temperature difference
1) Attitude Determination

- Sun sensor
 - Detects position of the Sun
 - Types:
 - PSD detector
 - QUAD detector
1) Attitude Determination

- PSD detector
 - measure a position of a light spot in one or two-dimensions on a sensor surface
 - High precision
1) Attitude Determination

- Quad photodiode detector
 - Incoming light is focused on the detector as a spot
 - Comparing of the output currents received from each of the four quadrants = position of light source
1) Attitude Determination

Calibration
1) Attitude Determination

- Sun-sensors orthogonality

![Sun-sensors orthogonality graph](image)
1) Attitude Determination

• Star tracker
 – Optical device that measures the position(s) of star(s) using photocell(s) or a camera.
1) Attitude Determination

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyroscopes</td>
<td>Drift rate: 0,003°/hr-1°/hr</td>
<td>1 - 25</td>
<td>5 - 200</td>
</tr>
<tr>
<td>Sun sensor</td>
<td>0,2 - 1</td>
<td>0,04 - 0,5</td>
<td>< 1</td>
</tr>
<tr>
<td>Star tracker/sensor</td>
<td>0,0002 - 0,08</td>
<td>3 - 7</td>
<td>4 - 32</td>
</tr>
<tr>
<td>Horizon sensor</td>
<td>0,02 - 0,1</td>
<td>0,6 - 5</td>
<td>1 - 8</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>0,5 - 1,0</td>
<td>0,2 - 0,7</td>
<td>< 1</td>
</tr>
<tr>
<td>GPS-Receiver</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1) Attitude Determination

- Sensor fusion
 - Gyroscope
 - Drift
 - Low-pass noise
 - Poor response
 - Magnetometer
 - Noisy
 - low-drift
2) Attitude control

• Passive systems

• Magnetic stabilization
 – B-dot algorithm
 – Testing with 3D helmholtz coils system

• Reaction wheel
2) Attitude control

- Passive magnetic stabilization
 - Uses permanent magnet
 - 2-axis stabilization
2) Attitude control

- Gravitation Gradient Stabilization
 - Different distance of the two masses m_1 and m_2 to the center of gravity -> $F_1 > F_2$
 - Centrifugal forces Fz_1 and Fz_2 also different
2) Attitude control

- Gravitation Gradient Stabilization
 - Example of a Gravitational Stabilized Satellite (UoSat-12)
2) Attitude control

• Spin-Stabilization
 – Rotating mass has an inherent stability (just like a spintop)
 – Long duration stability around the spinning axis
 – Antenna and instruments are rotating
 – Solar arrays must be body mounted
 – **Examples:** INTELSAT I, II und III, METEOSAT, MSG
2) Attitude control

• Reaction wheels
 – Implemented as special electric motors
 – rotation speed is changed - counter-rotate proportionately through conservation of angular momentum
2) Attitude control
2) Attitude control

• Active magnetic stabilization
 – Complexity (Actuators, Sensors, Software)
 – Not for interplanetary missions (require external magnetic field)
2) Attitude control

• Magnetorquer
 – Small coercivity is required
 – Higher permeability = lower energy
2) Attitude control

Magnetic stabilization
2) Attitude control

- B-dotequation

\[m = -k \dot{B} \]
2) Attitude control

- B-dot algorithm

- Magnetorquers

Magnetic stabilization
2) Attitude control

- Testing of ADCS
 - 3D hemholtz coils system
 - Generates an external magnetic field
 - Air bearing
 - Creates conditions of microgravity
2) Attitude control

Magnetic stabilization
2) Attitude control

Magnetic stabilization
2) Attitude control

Magnetic stabilization

![Graph showing B-dot axis Y-Z with angular velocity in degrees per second (°/sec) vs. time in seconds (s) with the equations for the curves: y = 29.838e^{-0.019x} and y = 30.506e^{-0.029x}.](image)
• Thank you for your attention 😊